TY - JOUR AU - Chulian, Salvador AU - Martinez-Rubio, Alvaro AU - Perez-Garcia, Victor M AU - Rosa, Maria AU - Blazquez Goñi, Cristina AU - Rodriguez Gutierrez, Juan Francisco AU - Hermosin-Ramos, Lourdes AU - Molinos Quintana, Agueda AU - Caballero-Velazquez, Teresa AU - Ramirez-Orellana, Manuel AU - Castillo Robleda, Ana AU - Fernandez-Martinez, Juan Luis PY - 2020 DO - 10.3390/cancers13010017 SN - 2072-6694 UR - http://hdl.handle.net/10668/16863 T2 - Cancers AB - Artificial intelligence methods may help in unveiling information that is hidden in high-dimensional oncological data. Flow cytometry studies of haematological malignancies provide quantitative data with the potential to be used for the construction... LA - en PB - MDPI KW - Acute lymphoblastic leukaemia KW - CD38 KW - Fisher’s ratio KW - Flow cytometry data KW - Mathematical oncology KW - Personalised medicine KW - Response biomarkers KW - Flow cytometry KW - Artificial intelligence KW - Precursor celllLymphoblastic leukemia-lymphoma KW - Recurrence KW - Hematologic neoplasms KW - Computational biology KW - Probability KW - Biomarkers TI - High-Dimensional Analysis of Single-Cell Flow Cytometry Data Predicts Relapse in Childhood Acute Lymphoblastic Leukaemia. TY - Research article VL - 13 ER -