%0 Journal Article %A Canzian, Federico %A Piredda, Chiara %A Macauda, Angelica %A Zawirska, Daria %A Andersen, Niels Frost %A Nagler, Arnon %A Zaucha, Jan Maciej %A Mazur, Grzegorz %A Dumontet, Charles %A Watek, Marzena %A Jamroziak, Krzysztof %A Sainz, Juan %A Varkonyi, Judit %A Butrym, Aleksandra %A Beider, Katia %A Abildgaard, Niels %A Lesueur, Fabienne %A Dudzinski, Marek %A Vangsted, Annette Juul %A Pelosini, Matteo %A Subocz, Edyta %A Petrini, Mario %A Buda, Gabriele %A Razny, Malgorzata %A Gemignani, Federica %A Marques, Herlander %A Orciuolo, Enrico %A Kadar, Katalin %A Jurczyszyn, Artur %A Druzd-Sitek, Agnieszka %A Vogel, Ulla %A Andersen, Vibeke %A Reis, Rui Manuel %A Suska, Anna %A Avet-Loiseau, Herve %A Kruszewski, Marcin %A Tomczak, Waldemar %A Rymko, Marcin %A Minvielle, Stephane %A Campa, Daniele %T A polygenic risk score for multiple myeloma risk prediction %D 2021 %@ 1018-4813 %U https://hdl.handle.net/10668/26366 %X There is overwhelming epidemiologic evidence that the risk of multiple myeloma (MM) has a solid genetic background. Genome-wide association studies (GWAS) have identified 23 risk loci that contribute to the genetic susceptibility of MM, but have low individual penetrance. Combining the SNPs in a polygenic risk score (PRS) is a possible approach to improve their usefulness. Using 2361 MM cases and 1415 controls from the International Multiple Myeloma rESEarch (IMMEnSE) consortium, we computed a weighted and an unweighted PRS. We observed associations with MM risk with OR = 3.44, 95% CI 2.53-4.69, p = 3.55 x 10(-15) for the highest vs. lowest quintile of the weighted score, and OR = 3.18, 95% CI 2.1 = 34-4.33, p = 1.62 x 10(-13) for the highest vs. lowest quintile of the unweighted score. We found a convincing association of a PRS generated with 23 SNPs and risk of MM. Our work provides additional validation of previously discovered MM risk variants and of their combination into a PRS, which is a first step towards the use of genetics for risk stratification in the general population. %K Monoclonal gammopathy %K Stratification %K Polymorphisms %K Epidemiology %~