Melanoma Recognition by Fusing Convolutional Blocks and Dynamic Routing between Capsules.

dc.contributor.authorPérez, Eduardo
dc.contributor.authorVentura, Sebastián
dc.date.accessioned2025-01-07T17:09:21Z
dc.date.available2025-01-07T17:09:21Z
dc.date.issued2021-10-03
dc.description.abstractSkin cancer is one of the most common types of cancers in the world, with melanoma being the most lethal form. Automatic melanoma diagnosis from skin images has recently gained attention within the machine learning community, due to the complexity involved. In the past few years, convolutional neural network models have been commonly used to approach this issue. This type of model, however, presents disadvantages that sometimes hamper its application in real-world situations, e.g., the construction of transformation-invariant models and their inability to consider spatial hierarchies between entities within an image. Recently, Dynamic Routing between Capsules architecture (CapsNet) has been proposed to overcome such limitations. This work is aimed at proposing a new architecture which combines convolutional blocks with a customized CapsNet architecture, allowing for the extraction of richer abstract features. This architecture uses high-quality 299×299×3 skin lesion images, and a hyper-tuning of the main parameters is performed in order to ensure effective learning under limited training data. An extensive experimental study on eleven image datasets was conducted where the proposal significantly outperformed several state-of-the-art models. Finally, predictions made by the model were validated through the application of two modern model-agnostic interpretation tools.
dc.identifier.doi10.3390/cancers13194974
dc.identifier.issn2072-6694
dc.identifier.pmcPMC8508435
dc.identifier.pmid34638456
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC8508435/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2072-6694/13/19/4974/pdf?version=1638175224
dc.identifier.urihttps://hdl.handle.net/10668/28208
dc.issue.number19
dc.journal.titleCancers
dc.journal.titleabbreviationCancers (Basel)
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCapsNet
dc.subjectconvolutional neural network
dc.subjectinterpretation tool
dc.subjectmelanoma diagnosis
dc.titleMelanoma Recognition by Fusing Convolutional Blocks and Dynamic Routing between Capsules.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number13

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PMC8508435.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format