Improving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images.

dc.contributor.authorCalderon-Ramirez, Saul
dc.contributor.authorYang, Shengxiang
dc.contributor.authorMoemeni, Armaghan
dc.contributor.authorColreavy-Donnelly, Simon
dc.contributor.authorElizondo, David A
dc.contributor.authorOala, Luis
dc.contributor.authorRodriguez-Capitan, Jorge
dc.contributor.authorJimenez-Navarro, Manuel
dc.contributor.authorLopez-Rubio, Ezequiel
dc.contributor.authorMolina-Cabello, Miguel A
dc.date.accessioned2025-01-07T13:08:14Z
dc.date.available2025-01-07T13:08:14Z
dc.date.issued2021-06-02
dc.description.abstractIn this work we implement a COVID-19 infection detection system based on chest X-ray images with uncertainty estimation. Uncertainty estimation is vital for safe usage of computer aided diagnosis tools in medical applications. Model estimations with high uncertainty should be carefully analyzed by a trained radiologist. We aim to improve uncertainty estimations using unlabelled data through the MixMatch semi-supervised framework. We test popular uncertainty estimation approaches, comprising Softmax scores, Monte-Carlo dropout and deterministic uncertainty quantification. To compare the reliability of the uncertainty estimates, we propose the usage of the Jensen-Shannon distance between the uncertainty distributions of correct and incorrect estimations. This metric is statistically relevant, unlike most previously used metrics, which often ignore the distribution of the uncertainty estimations. Our test results show a significant improvement in uncertainty estimates when using unlabelled data. The best results are obtained with the use of the Monte Carlo dropout method.
dc.identifier.doi10.1109/ACCESS.2021.3085418
dc.identifier.issn2169-3536
dc.identifier.pmcPMC8545186
dc.identifier.pmid34812397
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC8545186/pdf
dc.identifier.unpaywallURLhttps://ieeexplore.ieee.org/ielx7/6287639/9312710/09445026.pdf
dc.identifier.urihttps://hdl.handle.net/10668/25277
dc.journal.titleIEEE access : practical innovations, open solutions
dc.journal.titleabbreviationIEEE Access
dc.language.isoen
dc.organizationSAS - Hospital Universitario Puerta del Mar
dc.organizationSAS - Hospital Universitario Reina Sofía
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)
dc.organizationSAS - Hospital Universitario Virgen de las Nieves
dc.organizationSAS - Hospital Universitario Regional de Málaga
dc.organizationSAS - Hospital Universitario Virgen del Rocío
dc.page.number85442-85454
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCoronavirus
dc.subjectCovid-19
dc.subjectMixMatch
dc.subjectUncertainty estimation
dc.subjectchest x-ray
dc.subjectcomputer aided diagnosis
dc.subjectsemi-supervised deep learning
dc.titleImproving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number9

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PMC8545186.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format