Improving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images.
dc.contributor.author | Calderon-Ramirez, Saul | |
dc.contributor.author | Yang, Shengxiang | |
dc.contributor.author | Moemeni, Armaghan | |
dc.contributor.author | Colreavy-Donnelly, Simon | |
dc.contributor.author | Elizondo, David A | |
dc.contributor.author | Oala, Luis | |
dc.contributor.author | Rodriguez-Capitan, Jorge | |
dc.contributor.author | Jimenez-Navarro, Manuel | |
dc.contributor.author | Lopez-Rubio, Ezequiel | |
dc.contributor.author | Molina-Cabello, Miguel A | |
dc.date.accessioned | 2025-01-07T13:08:14Z | |
dc.date.available | 2025-01-07T13:08:14Z | |
dc.date.issued | 2021-06-02 | |
dc.description.abstract | In this work we implement a COVID-19 infection detection system based on chest X-ray images with uncertainty estimation. Uncertainty estimation is vital for safe usage of computer aided diagnosis tools in medical applications. Model estimations with high uncertainty should be carefully analyzed by a trained radiologist. We aim to improve uncertainty estimations using unlabelled data through the MixMatch semi-supervised framework. We test popular uncertainty estimation approaches, comprising Softmax scores, Monte-Carlo dropout and deterministic uncertainty quantification. To compare the reliability of the uncertainty estimates, we propose the usage of the Jensen-Shannon distance between the uncertainty distributions of correct and incorrect estimations. This metric is statistically relevant, unlike most previously used metrics, which often ignore the distribution of the uncertainty estimations. Our test results show a significant improvement in uncertainty estimates when using unlabelled data. The best results are obtained with the use of the Monte Carlo dropout method. | |
dc.identifier.doi | 10.1109/ACCESS.2021.3085418 | |
dc.identifier.issn | 2169-3536 | |
dc.identifier.pmc | PMC8545186 | |
dc.identifier.pmid | 34812397 | |
dc.identifier.pubmedURL | https://pmc.ncbi.nlm.nih.gov/articles/PMC8545186/pdf | |
dc.identifier.unpaywallURL | https://ieeexplore.ieee.org/ielx7/6287639/9312710/09445026.pdf | |
dc.identifier.uri | https://hdl.handle.net/10668/25277 | |
dc.journal.title | IEEE access : practical innovations, open solutions | |
dc.journal.titleabbreviation | IEEE Access | |
dc.language.iso | en | |
dc.organization | SAS - Hospital Universitario Puerta del Mar | |
dc.organization | SAS - Hospital Universitario Reina Sofía | |
dc.organization | Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC) | |
dc.organization | SAS - Hospital Universitario Virgen de las Nieves | |
dc.organization | SAS - Hospital Universitario Regional de Málaga | |
dc.organization | SAS - Hospital Universitario Virgen del Rocío | |
dc.page.number | 85442-85454 | |
dc.pubmedtype | Journal Article | |
dc.rights | Attribution 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Coronavirus | |
dc.subject | Covid-19 | |
dc.subject | MixMatch | |
dc.subject | Uncertainty estimation | |
dc.subject | chest x-ray | |
dc.subject | computer aided diagnosis | |
dc.subject | semi-supervised deep learning | |
dc.title | Improving Uncertainty Estimation With Semi-Supervised Deep Learning for COVID-19 Detection Using Chest X-Ray Images. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 9 |
Files
Original bundle
1 - 1 of 1
Collections
SAS - Hospital Universitario Puerta del Mar
Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud (FIMABIS)
Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)
SAS - Hospital Universitario Reina Sofía
SAS - Hospital Universitario Virgen de las Nieves
SAS - Hospital Universitario Virgen del Rocío
Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud (FIMABIS)
Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)
SAS - Hospital Universitario Reina Sofía
SAS - Hospital Universitario Virgen de las Nieves
SAS - Hospital Universitario Virgen del Rocío