Amoxicillin Inactivation by Thiol-Catalyzed Cyclization Reduces Protein Haptenation and Antibacterial Potency.

dc.contributor.authorPajares, Maria A
dc.contributor.authorZimmerman, Tahl
dc.contributor.authorSanchez-Gomez, Francisco J
dc.contributor.authorAriza, Adriana
dc.contributor.authorTorres, Maria J
dc.contributor.authorBlanca, Miguel
dc.contributor.authorCañada, F Javier
dc.contributor.authorMontañez, Maria I
dc.contributor.authorPerez-Sala, Dolores
dc.contributor.funderAndalusian Regional Ministry Health
dc.contributor.funderMINECO/FEDER
dc.contributor.funderISCIII/FEDER
dc.date.accessioned2025-01-07T15:03:09Z
dc.date.available2025-01-07T15:03:09Z
dc.date.issued2020-03-04
dc.description.abstractSerum and cellular proteins are targets for the formation of adducts with the β-lactam antibiotic amoxicillin. This process could be important for the development of adverse, and in particular, allergic reactions to this antibiotic. In studies exploring protein haptenation by amoxicillin, we observed that reducing agents influenced the extent of amoxicillin-protein adducts formation. Consequently, we show that several thiol-containing compounds, including dithiothreitol, N-acetyl-L-cysteine, and glutathione, perform a nucleophilic attack on the amoxicillin molecule that is followed by an internal rearrangement leading to amoxicillin diketopiperazine, a known amoxicillin metabolite with residual activity. Increased diketopiperazine conversion is also observed with human serum albumin but not with L-cysteine, which mainly forms the amoxicilloyl amide. The effect of thiols is catalytic and can render complete amoxicillin conversion. Interestingly, this process is dependent on the presence of an amino group in the antibiotic lateral chain, as in amoxicillin and ampicillin. Furthermore, it does not occur for other β-lactam antibiotics, including cefaclor or benzylpenicillin. Biological consequences of thiol-mediated amoxicillin transformation are exemplified by a reduced bacteriostatic action and a lower capacity of thiol-treated amoxicillin to form protein adducts. Finally, modulation of the intracellular redox status through inhibition of glutathione synthesis influenced the extent of amoxicillin adduct formation with cellular proteins. These results open novel perspectives for the understanding of amoxicillin metabolism and actions, including the formation of adducts involved in allergic reactions.
dc.description.sponsorshipThis work was supported by grant SAF2015-68590-R from MINECO/FEDER, RTI2018-097624-B-I00 and RETIC Aradyal from ISCIII/FEDER RD16/0006/0021 to DP-S; RD16/0006/0001 to MT, RD16/0006/0024 to MB; grants CP15/00103 and PI17/01237 from ISCIII/ERDF and PI-0179-2014 from Andalusian Regional Ministry Health to MM. AA holds a “Sara Borrell” research contract (CD17/0146) supported by ISCIII from MINECO [cofunded by the European Social Fund (ESF)]. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).
dc.description.versionSi
dc.identifier.citationPajares MA, Zimmerman T, Sánchez-Gómez FJ, Ariza A, Torres MJ, Blanca M, et al. Amoxicillin Inactivation by Thiol-Catalyzed Cyclization Reduces Protein Haptenation and Antibacterial Potency. Front Pharmacol. 2020 Mar 4;11:189
dc.identifier.doi10.3389/fphar.2020.00189
dc.identifier.issn1663-9812
dc.identifier.pmcPMC7065267
dc.identifier.pmid32210804
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC7065267/pdf
dc.identifier.unpaywallURLhttps://www.frontiersin.org/articles/10.3389/fphar.2020.00189/pdf
dc.identifier.urihttps://hdl.handle.net/10668/26837
dc.journal.titleFrontiers in pharmacology
dc.journal.titleabbreviationFront Pharmacol
dc.language.isoen
dc.organizationSAS - Hospital Universitario Regional de Málaga
dc.organizationInstituto de Investigación Biomédica de Málaga - Plataforma Bionand (IBIMA)
dc.page.number16
dc.provenanceRealizada la curación de contenido 10/03/2025
dc.publisherFrontiers Research Foundation
dc.pubmedtypeJournal Article
dc.relation.projectIDSAF2015-68590-R
dc.relation.projectIDRTI2018-097624-B-I00
dc.relation.projectIDRD16/0006/0021
dc.relation.projectIDCP15/00103
dc.relation.projectIDPI-0179-2014
dc.relation.publisherversionhttps://doi.org/10.3389/fphar.2020.00189
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAmoxicillin
dc.subjectBacterial growth
dc.subjectInactivation mechanism
dc.subjectProtein adducts
dc.subjectRedox regulation
dc.subjectThiol groups
dc.subjectThiol-containing molecules
dc.subjectβ-lactam antibiotics
dc.subject.decsAmoxicilina
dc.subject.decsCompuestos de Sulfhidrilo
dc.subject.decsAntibacterianos
dc.subject.decsGlutatión
dc.subject.decsHipersensibilidad
dc.subject.decsLactamas
dc.subject.decsDicetopiperazinas
dc.subject.meshSerum Albumin, Human
dc.subject.meshAmpicillin
dc.subject.meshOxidation-Reduction
dc.subject.meshPenicillin G
dc.subject.meshHypersensitivity
dc.subject.meshGlutathione
dc.titleAmoxicillin Inactivation by Thiol-Catalyzed Cyclization Reduces Protein Haptenation and Antibacterial Potency.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PMC7065267.pdf
Size:
3.89 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Pajares_AmoxicillinInactivation_MaterialSuplementario.pdf
Size:
695.52 KB
Format:
Adobe Portable Document Format