Parallelization strategies for markerless human motion capture

dc.contributor.authorCano, Alberto
dc.contributor.authorYeguas-Bolivar, Enrique
dc.contributor.authorMunoz-Salinas, Rafael
dc.contributor.authorMedina-Carnicer, Rafael
dc.contributor.authorVentura, Sebastian
dc.contributor.authoraffiliation[Cano, Alberto] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
dc.contributor.authoraffiliation[Yeguas-Bolivar, Enrique] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
dc.contributor.authoraffiliation[Munoz-Salinas, Rafael] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
dc.contributor.authoraffiliation[Medina-Carnicer, Rafael] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
dc.contributor.authoraffiliation[Ventura, Sebastian] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
dc.contributor.authoraffiliation[Yeguas-Bolivar, Enrique] Maimonides Inst Biomed Res IMIBIC, Cordoba, Spain
dc.contributor.authoraffiliation[Munoz-Salinas, Rafael] Maimonides Inst Biomed Res IMIBIC, Cordoba, Spain
dc.contributor.authoraffiliation[Medina-Carnicer, Rafael] Maimonides Inst Biomed Res IMIBIC, Cordoba, Spain
dc.contributor.funderSpanish Ministry of Science and Technology
dc.contributor.funderFEDER funds
dc.contributor.funderSpanish Ministry of Education under FPU grant
dc.contributor.funderSpanish Ministry of Science and Technology
dc.contributor.funderFEDER funds
dc.contributor.funderSpanish Ministry of Education under FPU grant
dc.date.accessioned2025-01-07T17:08:21Z
dc.date.available2025-01-07T17:08:21Z
dc.date.issued2018-02-01
dc.description.abstractMarkerless motion capture (MMOCAP) is the problem of determining the pose of a person from images captured by one or several cameras simultaneously without using markers on the subject. Evaluation of the solutions is frequently the most time-consuming task, making most of the proposed methods inapplicable in real-time scenarios. This paper presents an efficient approach to parallelize the evaluation of the solutions in CPUs and GPUs. Our proposal is experimentally compared on six sequences of the HumanEva-I dataset using the CMAES algorithm. Multiple algorithm's configurations were tested to analyze the best trade-off with regard to the accuracy and computing time. The proposed methods obtain speedups of 8 in multi-core CPUs, 30 in a single GPU and up to 110 using 4 GPUs.
dc.identifier.doi10.1007/s11554-014-0467-1
dc.identifier.essn1861-8219
dc.identifier.issn1861-8200
dc.identifier.unpaywallURLhttp://helvia.uco.es/xmlui/bitstream/10396/13002/1/cano.pdf
dc.identifier.urihttps://hdl.handle.net/10668/28194
dc.identifier.wosID427725200013
dc.issue.number2
dc.journal.titleJournal of real-time image processing
dc.journal.titleabbreviationJ. real-time image process.
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)
dc.page.number453-467
dc.publisherSpringer heidelberg
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMarkerless motion capture (MMOCAP)
dc.subjectGPU
dc.subjectTracking
dc.subject3d human motion
dc.subjectBody motion
dc.subjectTracking
dc.subjectStereophotogrammetry
dc.subjectEvolution
dc.titleParallelization strategies for markerless human motion capture
dc.typeresearch article
dc.type.hasVersionSMUR
dc.volume.number14
dc.wostypeArticle

Files