Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen.

dc.contributor.authorMenden, Michael P
dc.contributor.authorWang, Dennis
dc.contributor.authorMason, Mike J
dc.contributor.authorSzalai, Bence
dc.contributor.authorBulusu, Krishna C
dc.contributor.authorGuan, Yuanfang
dc.contributor.authorYu, Thomas
dc.contributor.authorKang, Jaewoo
dc.contributor.authorJeon, Minji
dc.contributor.authorWolfinger, Russ
dc.contributor.authorNguyen, Tin
dc.contributor.authorZaslavskiy, Mikhail
dc.contributor.authorAstraZeneca-Sanger Drug Combination DREAM Consortium
dc.contributor.authorJang, In Sock
dc.contributor.authorGhazoui, Zara
dc.contributor.authorAhsen, Mehmet Eren
dc.contributor.authorVogel, Robert
dc.contributor.authorNeto, Elias Chaibub
dc.contributor.authorNorman, Thea
dc.contributor.authorTang, Eric K Y
dc.contributor.authorGarnett, Mathew J
dc.contributor.authorVeroli, Giovanni Y Di
dc.contributor.authorFawell, Stephen
dc.contributor.authorStolovitzky, Gustavo
dc.contributor.authorGuinney, Justin
dc.contributor.authorDry, Jonathan R
dc.contributor.authorSaez-Rodriguez, Julio
dc.date.accessioned2025-01-07T12:52:19Z
dc.date.available2025-01-07T12:52:19Z
dc.date.issued2019-06-17
dc.description.abstractThe effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.
dc.identifier.doi10.1038/s41467-019-09799-2
dc.identifier.essn2041-1723
dc.identifier.pmcPMC6572829
dc.identifier.pmid31209238
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC6572829/pdf
dc.identifier.unpaywallURLhttps://www.nature.com/articles/s41467-019-09799-2.pdf
dc.identifier.urihttps://hdl.handle.net/10668/25009
dc.issue.number1
dc.journal.titleNature communications
dc.journal.titleabbreviationNat Commun
dc.language.isoen
dc.organizationSAS - Hospital Punta de Europa
dc.organizationSAS - Hospital Universitario de Puerto Real
dc.organizationSAS - Hospital Universitario de Jerez de la Frontera
dc.organizationSAS - Hospital Universitario Reina Sofía
dc.organizationSAS - Hospital Universitario de Jaén
dc.organizationSAS - Hospital Universitario Virgen de la Victoria
dc.organizationSAS - Hospital Universitario Regional de Málaga
dc.organizationInstituto de Investigación Biomédica de Málaga - Plataforma Bionand (IBIMA)
dc.page.number2674
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshADAM17 Protein
dc.subject.meshAntineoplastic Combined Chemotherapy Protocols
dc.subject.meshBenchmarking
dc.subject.meshBiomarkers, Tumor
dc.subject.meshCell Line, Tumor
dc.subject.meshComputational Biology
dc.subject.meshDatasets as Topic
dc.subject.meshDrug Antagonism
dc.subject.meshDrug Resistance, Neoplasm
dc.subject.meshDrug Synergism
dc.subject.meshGenomics
dc.subject.meshHumans
dc.subject.meshMolecular Targeted Therapy
dc.subject.meshMutation
dc.subject.meshNeoplasms
dc.subject.meshPharmacogenetics
dc.subject.meshPhosphatidylinositol 3-Kinases
dc.subject.meshPhosphoinositide-3 Kinase Inhibitors
dc.subject.meshTreatment Outcome
dc.titleCommunity assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number10

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PMC6572829.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format