Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen.
dc.contributor.author | Menden, Michael P | |
dc.contributor.author | Wang, Dennis | |
dc.contributor.author | Mason, Mike J | |
dc.contributor.author | Szalai, Bence | |
dc.contributor.author | Bulusu, Krishna C | |
dc.contributor.author | Guan, Yuanfang | |
dc.contributor.author | Yu, Thomas | |
dc.contributor.author | Kang, Jaewoo | |
dc.contributor.author | Jeon, Minji | |
dc.contributor.author | Wolfinger, Russ | |
dc.contributor.author | Nguyen, Tin | |
dc.contributor.author | Zaslavskiy, Mikhail | |
dc.contributor.author | AstraZeneca-Sanger Drug Combination DREAM Consortium | |
dc.contributor.author | Jang, In Sock | |
dc.contributor.author | Ghazoui, Zara | |
dc.contributor.author | Ahsen, Mehmet Eren | |
dc.contributor.author | Vogel, Robert | |
dc.contributor.author | Neto, Elias Chaibub | |
dc.contributor.author | Norman, Thea | |
dc.contributor.author | Tang, Eric K Y | |
dc.contributor.author | Garnett, Mathew J | |
dc.contributor.author | Veroli, Giovanni Y Di | |
dc.contributor.author | Fawell, Stephen | |
dc.contributor.author | Stolovitzky, Gustavo | |
dc.contributor.author | Guinney, Justin | |
dc.contributor.author | Dry, Jonathan R | |
dc.contributor.author | Saez-Rodriguez, Julio | |
dc.date.accessioned | 2025-01-07T12:52:19Z | |
dc.date.available | 2025-01-07T12:52:19Z | |
dc.date.issued | 2019-06-17 | |
dc.description.abstract | The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca's large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells. | |
dc.identifier.doi | 10.1038/s41467-019-09799-2 | |
dc.identifier.essn | 2041-1723 | |
dc.identifier.pmc | PMC6572829 | |
dc.identifier.pmid | 31209238 | |
dc.identifier.pubmedURL | https://pmc.ncbi.nlm.nih.gov/articles/PMC6572829/pdf | |
dc.identifier.unpaywallURL | https://www.nature.com/articles/s41467-019-09799-2.pdf | |
dc.identifier.uri | https://hdl.handle.net/10668/25009 | |
dc.issue.number | 1 | |
dc.journal.title | Nature communications | |
dc.journal.titleabbreviation | Nat Commun | |
dc.language.iso | en | |
dc.organization | SAS - Hospital Punta de Europa | |
dc.organization | SAS - Hospital Universitario de Puerto Real | |
dc.organization | SAS - Hospital Universitario de Jerez de la Frontera | |
dc.organization | SAS - Hospital Universitario Reina Sofía | |
dc.organization | SAS - Hospital Universitario de Jaén | |
dc.organization | SAS - Hospital Universitario Virgen de la Victoria | |
dc.organization | SAS - Hospital Universitario Regional de Málaga | |
dc.organization | Instituto de Investigación Biomédica de Málaga - Plataforma Bionand (IBIMA) | |
dc.page.number | 2674 | |
dc.pubmedtype | Journal Article | |
dc.pubmedtype | Research Support, Non-U.S. Gov't | |
dc.rights | Attribution 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject.mesh | ADAM17 Protein | |
dc.subject.mesh | Antineoplastic Combined Chemotherapy Protocols | |
dc.subject.mesh | Benchmarking | |
dc.subject.mesh | Biomarkers, Tumor | |
dc.subject.mesh | Cell Line, Tumor | |
dc.subject.mesh | Computational Biology | |
dc.subject.mesh | Datasets as Topic | |
dc.subject.mesh | Drug Antagonism | |
dc.subject.mesh | Drug Resistance, Neoplasm | |
dc.subject.mesh | Drug Synergism | |
dc.subject.mesh | Genomics | |
dc.subject.mesh | Humans | |
dc.subject.mesh | Molecular Targeted Therapy | |
dc.subject.mesh | Mutation | |
dc.subject.mesh | Neoplasms | |
dc.subject.mesh | Pharmacogenetics | |
dc.subject.mesh | Phosphatidylinositol 3-Kinases | |
dc.subject.mesh | Phosphoinositide-3 Kinase Inhibitors | |
dc.subject.mesh | Treatment Outcome | |
dc.title | Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 10 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- PMC6572829.pdf
- Size:
- 1.57 MB
- Format:
- Adobe Portable Document Format
Collections
SAS - Hospital Punta de Europa
Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud (FIMABIS)
Instituto de Investigación Biomédica de Málaga - Plataforma Bionand (IBIMA)
SAS - Hospital Universitario de Jaén
SAS - Hospital Universitario de Jerez de la Frontera
SAS - Hospital Universitario de Puerto Real
Load more Fundación Pública Andaluza para la Investigación de Málaga en Biomedicina y Salud (FIMABIS)
Instituto de Investigación Biomédica de Málaga - Plataforma Bionand (IBIMA)
SAS - Hospital Universitario de Jaén
SAS - Hospital Universitario de Jerez de la Frontera
SAS - Hospital Universitario de Puerto Real