Two independent mouse lines carrying the Nav1.7 I228M gain-of-function variant display dorsal root ganglion neuron hyperexcitability but a minimal pain phenotype.

dc.contributor.authorChen, Lubin
dc.contributor.authorWimalasena, Nivanthika K
dc.contributor.authorShim, Jaehoon
dc.contributor.authorHan, Chongyang
dc.contributor.authorLee, Seong-Il
dc.contributor.authorGonzalez-Cano, Rafael
dc.contributor.authorEstacion, Mark
dc.contributor.authorFaber, Catharina G
dc.contributor.authorLauria, Giuseppe
dc.contributor.authorDib-Hajj, Sulayman D
dc.contributor.authorWoolf, Clifford J
dc.contributor.authorWaxman, Stephen G
dc.date.accessioned2025-01-07T15:25:18Z
dc.date.available2025-01-07T15:25:18Z
dc.date.issued2021
dc.description.abstractSmall-fiber neuropathy (SFN), characterized by distal unmyelinated or thinly myelinated fiber loss, produces a combination of sensory dysfunction and neuropathic pain. Gain-of-function variants in the sodium channel Nav1.7 that produce dorsal root ganglion (DRG) neuron hyperexcitability are present in 5% to 10% of patients with idiopathic painful SFN. We created 2 independent knock-in mouse lines carrying the Nav1.7 I228M gain-of-function variant, found in idiopathic SFN. Whole-cell patch-clamp and multielectrode array recordings show that Nav1.7 I228M knock-in DRG neurons are hyperexcitable compared with wild-type littermate-control neurons, but despite this, Nav1.7 I228M mice do not display mechanical or thermal hyperalgesia or intraepidermal nerve fiber loss in vivo. Therefore, although these 2 Nav1.7 I228M knock-in mouse lines recapitulate the DRG neuron hyperexcitability associated with gain-of-function mutations in Nav1.7, they do not recapitulate the pain or neuropathy phenotypes seen in patients. We suggest that the relationship between hyperexcitability in sensory neurons and the pain experienced by these patients may be more complex than previously appreciated and highlights the challenges in modelling channelopathy pain disorders in mice.
dc.identifier.doi10.1097/j.pain.0000000000002171
dc.identifier.essn1872-6623
dc.identifier.pmcPMC8119301
dc.identifier.pmid33323889
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC8119301/pdf
dc.identifier.unpaywallURLhttps://air.unimi.it/bitstream/2434/802111/2/00006396-900000000-98178.pdf
dc.identifier.urihttps://hdl.handle.net/10668/27126
dc.issue.number6
dc.journal.titlePain
dc.journal.titleabbreviationPain
dc.language.isoen
dc.organizationSAS - Hospital Universitario Virgen de Valme
dc.page.number1758-1770
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, N.I.H., Extramural
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.pubmedtypeResearch Support, U.S. Gov't, Non-P.H.S.
dc.rights.accessRightsopen access
dc.subject.meshAnimals
dc.subject.meshGain of Function Mutation
dc.subject.meshGanglia, Spinal
dc.subject.meshHumans
dc.subject.meshMice
dc.subject.meshNAV1.7 Voltage-Gated Sodium Channel
dc.subject.meshPhenotype
dc.subject.meshSensory Receptor Cells
dc.titleTwo independent mouse lines carrying the Nav1.7 I228M gain-of-function variant display dorsal root ganglion neuron hyperexcitability but a minimal pain phenotype.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number162

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PMC8119301.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format