The age again in the eye of the COVID-19 storm: evidence-based decision making.

dc.contributor.authorMartín, María C
dc.contributor.authorJurado, Aurora
dc.contributor.authorAbad-Molina, Cristina
dc.contributor.authorOrduña, Antonio
dc.contributor.authorYarce, Oscar
dc.contributor.authorNavas, Ana M
dc.contributor.authorCunill, Vanesa
dc.contributor.authorEscobar, Danilo
dc.contributor.authorBoix, Francisco
dc.contributor.authorBurillo-Sanz, Sergio
dc.contributor.authorVegas-Sánchez, María C
dc.contributor.authorJiménez-de Las Pozas, Yesenia
dc.contributor.authorMelero, Josefa
dc.contributor.authorAguilar, Marta
dc.contributor.authorSobieschi, Oana Irina
dc.contributor.authorLópez-Hoyos, Marcos
dc.contributor.authorOcejo-Vinyals, Gonzalo
dc.contributor.authorSan Segundo, David
dc.contributor.authorAlmeida, Delia
dc.contributor.authorMedina, Silvia
dc.contributor.authorFernández, Luis
dc.contributor.authorVergara, Esther
dc.contributor.authorQuirant, Bibiana
dc.contributor.authorMartínez-Cáceres, Eva
dc.contributor.authorBoiges, Marc
dc.contributor.authorAlonso, Marta
dc.contributor.authorEsparcia-Pinedo, Laura
dc.contributor.authorLópez-Sanz, Celia
dc.contributor.authorMuñoz-Vico, Javier
dc.contributor.authorLópez-Palmero, Serafín
dc.contributor.authorTrujillo, Antonio
dc.contributor.authorÁlvarez, Paula
dc.contributor.authorPrada, Álvaro
dc.contributor.authorMonzón, David
dc.contributor.authorOntañón, Jesús
dc.contributor.authorMarco, Francisco M
dc.contributor.authorMora, Sergio
dc.contributor.authorRojo, Ricardo
dc.contributor.authorGonzález-Martínez, Gema
dc.contributor.authorMartínez-Saavedra, María T
dc.contributor.authorGil-Herrera, Juana
dc.contributor.authorCantenys-Molina, Sergi
dc.contributor.authorHernández, Manuel
dc.contributor.authorPerurena-Prieto, Janire
dc.contributor.authorRodríguez-Bayona, Beatriz
dc.contributor.authorMartínez, Alba
dc.contributor.authorOcaña, Esther
dc.contributor.authorMolina, Juan
dc.date.accessioned2025-01-07T17:21:51Z
dc.date.available2025-01-07T17:21:51Z
dc.date.issued2021-05-20
dc.description.abstractOne hundred fifty million contagions, more than 3 million deaths and little more than 1 year of COVID-19 have changed our lives and our health management systems forever. Ageing is known to be one of the significant determinants for COVID-19 severity. Two main reasons underlie this: immunosenescence and age correlation with main COVID-19 comorbidities such as hypertension or dyslipidaemia. This study has two aims. The first is to obtain cut-off points for laboratory parameters that can help us in clinical decision-making. The second one is to analyse the effect of pandemic lockdown on epidemiological, clinical, and laboratory parameters concerning the severity of the COVID-19. For these purposes, 257 of SARSCoV2 inpatients during pandemic confinement were included in this study. Moreover, 584 case records from a previously analysed series, were compared with the present study data. Concerning the characteristics of lockdown series, mild cases accounted for 14.4, 54.1% were moderate and 31.5%, severe. There were 32.5% of home contagions, 26.3% community transmissions, 22.5% nursing home contagions, and 8.8% corresponding to frontline worker contagions regarding epidemiological features. Age > 60 and male sex are hereby confirmed as severity determinants. Equally, higher severity was significantly associated with higher IL6, CRP, ferritin, LDH, and leukocyte counts, and a lower percentage of lymphocyte, CD4 and CD8 count. Comparing this cohort with a previous 584-cases series, mild cases were less than those analysed in the first moment of the pandemic and dyslipidaemia became more frequent than before. IL-6, CRP and LDH values above 69 pg/mL, 97 mg/L and 328 U/L respectively, as well as a CD4 T-cell count below 535 cells/μL, were the best cut-offs predicting severity since these parameters offered reliable areas under the curve. Age and sex together with selected laboratory parameters on admission can help us predict COVID-19 severity and, therefore, make clinical and resource management decisions. Demographic features associated with lockdown might affect the homogeneity of the data and the robustness of the results.
dc.identifier.doi10.1186/s12979-021-00237-w
dc.identifier.issn1742-4933
dc.identifier.pmcPMC8134808
dc.identifier.pmid34016150
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC8134808/pdf
dc.identifier.unpaywallURLhttps://immunityageing.biomedcentral.com/counter/pdf/10.1186/s12979-021-00237-w
dc.identifier.urihttps://hdl.handle.net/10668/28339
dc.issue.number1
dc.journal.titleImmunity & ageing : I & A
dc.journal.titleabbreviationImmun Ageing
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)
dc.organizationSAS - Hospital Universitario de Jaén
dc.organizationSAS - Hospital Universitario Torrecárdenas
dc.organizationSAS - Hospital Universitario Reina Sofía
dc.organizationSAS - Hospital Universitario Juan Ramón Jiménez
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)
dc.page.number24
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectArea under the curve
dc.subjectCOVID-19
dc.subjectCut-off points
dc.subjectImmunity
dc.subjectImmunosenescence
dc.subjectLockdown
dc.subjectLymphocytes
dc.subjectRenin-angiotensin-aldosterone system inhibitors
dc.subjectSevere acute respiratory syndrome coronavirus 2
dc.titleThe age again in the eye of the COVID-19 storm: evidence-based decision making.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number18

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PMC8134808.pdf
Size:
1.14 MB
Format:
Adobe Portable Document Format