Ensemble ellipse fitting by spatial median consensus

dc.contributor.authorThurnhofer-Hemsi, Karl
dc.contributor.authorLopez-Rubio, Ezequiel
dc.contributor.authorBlazquez-Parra, Elidia Beatriz
dc.contributor.authorLadron-de-Guevara-Munoz, M. Carmen
dc.contributor.authorde-Cozar-Macias, Oscar David
dc.contributor.authoraffiliation[Thurnhofer-Hemsi, Karl] Univ Malaga, Dept Comp Languages & Comp Sci, Bulevar Louis Pasteur 35, Malaga 29071, Spain
dc.contributor.authoraffiliation[Lopez-Rubio, Ezequiel] Univ Malaga, Dept Comp Languages & Comp Sci, Bulevar Louis Pasteur 35, Malaga 29071, Spain
dc.contributor.authoraffiliation[Thurnhofer-Hemsi, Karl] Biomed Res Inst Malaga IBIMA, C Doctor Miguel Diaz Recio 28, Malaga 29010, Spain
dc.contributor.authoraffiliation[Lopez-Rubio, Ezequiel] Biomed Res Inst Malaga IBIMA, C Doctor Miguel Diaz Recio 28, Malaga 29010, Spain
dc.contributor.authoraffiliation[Blazquez-Parra, Elidia Beatriz] Univ Malaga, Dept Graph Engn Design & Projects, C Doctor Ortiz Ramos, Malaga 29071, Spain
dc.contributor.authoraffiliation[Ladron-de-Guevara-Munoz, M. Carmen] Univ Malaga, Dept Graph Engn Design & Projects, C Doctor Ortiz Ramos, Malaga 29071, Spain
dc.contributor.authoraffiliation[de-Cozar-Macias, Oscar David] Univ Malaga, Dept Graph Engn Design & Projects, C Doctor Ortiz Ramos, Malaga 29071, Spain
dc.contributor.funderMinistry of Science, Innovation and Universities of Spain
dc.contributor.funderAutonomous Government of Andalusia (Spain)
dc.contributor.funderEuropean Regional Development Fund (ERDF)
dc.contributor.funderUniversidad de Malaga
dc.contributor.funderInstituto de Investigacion Biomedica de Malaga (IBIMA)
dc.contributor.funderSpanish Ministry of Education, Culture and Sport under the FPU program
dc.contributor.funderUniversidad de Malaga/CBUA
dc.date.accessioned2025-01-07T16:34:35Z
dc.date.available2025-01-07T16:34:35Z
dc.date.issued2021-08-18
dc.description.abstractEllipses are among the most frequently used geometric models in visual pattern recognition and digital image analysis. This work aims to combine the outputs of an ensemble of ellipse fitting methods, so that the deleterious effect of suboptimal fits is alleviated. Therefore, the accuracy of the combined ellipse fit is higher than the accuracy of the individual methods. Three characterizations of the ellipse have been considered by different researchers: algebraic, geometric, and natural. In this paper, the natural characterization has been employed in our method due to its superior performance. Furthermore, five ellipse fitting methods have been chosen to be combined by the proposed consensus method. The experiments include comparisons of our proposal with the original methods and additional ones. Several tests with synthetic and bitmap image datasets demonstrate its great potential with noisy data and the presence of occlusion. The proposed consensus algorithm is the only one that ranks among the first positions for all the tests that were carried out. This demonstrates the suitability of our proposal for practical applications with high occlusion or noise. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
dc.identifier.doi10.1016/j.ins.2021.08.011
dc.identifier.essn1872-6291
dc.identifier.issn0020-0255
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.ins.2021.08.011
dc.identifier.urihttps://hdl.handle.net/10668/27869
dc.identifier.wosID701166800019
dc.journal.titleInformation sciences
dc.journal.titleabbreviationInf. sci.
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga - Plataforma Bionand (IBIMA)
dc.page.number310-324
dc.publisherElsevier science inc
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectellipse fitting
dc.subjectconic fitting
dc.subjectensemble methods
dc.subjectL1-norm
dc.subjectspatial median consensus
dc.subjectGroup decision-making
dc.subjectComputer vision
dc.subjectPlanar curves
dc.subjectModels
dc.subjectScale
dc.subjectApproximation
dc.subjectRegression
dc.subjectSurfaces
dc.subjectFit
dc.titleEnsemble ellipse fitting by spatial median consensus
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number579
dc.wostypeArticle

Files