Representative Bacillus sp. AM1 from Gut Microbiota Harbor Versatile Molecular Pathways for Bisphenol A Biodegradation.

dc.contributor.authorLópez-Moreno, Ana
dc.contributor.authorTorres-Sánchez, Alfonso
dc.contributor.authorAcuña, Inmaculada
dc.contributor.authorSuárez, Antonio
dc.contributor.authorAguilera, Margarita
dc.date.accessioned2025-01-07T16:52:33Z
dc.date.available2025-01-07T16:52:33Z
dc.date.issued2021-05-07
dc.description.abstractHuman gut microbiota harbors numerous microbial species with molecular enzymatic potential that impact on the eubiosis/dysbiosis and health/disease balances. Microbiota species isolation and description of their specific molecular features remain largely unexplored. In the present study, we focused on the cultivation and selection of species able to tolerate or biodegrade the endocrine disruptor bisphenol A (BPA), a xenobiotic extensively found in food plastic containers. Chemical xenobiotic addition methods for the directed isolation, culturing, Whole Genome Sequencing (WGS), phylogenomic identification, and specific gene-encoding searches have been applied to isolate microorganisms, assess their BPA metabolization potential, and describe encoded catabolic pathways. BPA-tolerant strains were isolated from 30% of infant fecal microbial culture libraries analyzed. Most isolated strains were phylogenetically related to the operational taxonomic group Bacillus amyloliquefaciens spp. Importantly, WGS analysis of microbial representative strain, Bacillus sp. AM1 identified the four complete molecular pathways involved on BPA degradation indicating its versatility and high potential to degrade BPA. Pathways for Exopolysaccharide (EPS) and Polyhydroxyalkanates (PHA) biopolymer synthesis were also identified and phenotypically confirmed by transmission electronic microscopy (TEM). These microbial biopolymers could generally contribute to capture and/or deposit xenobiotics.
dc.identifier.doi10.3390/ijms22094952
dc.identifier.essn1422-0067
dc.identifier.pmcPMC8125285
dc.identifier.pmid34066922
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC8125285/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/1422-0067/22/9/4952/pdf?version=1620361234
dc.identifier.urihttps://hdl.handle.net/10668/28046
dc.issue.number9
dc.journal.titleInternational journal of molecular sciences
dc.journal.titleabbreviationInt J Mol Sci
dc.language.isoen
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBacillus
dc.subjectEPS
dc.subjectPHA
dc.subjectbisphenols
dc.subjectenzymes
dc.subjecthuman microbiota
dc.subjectmolecular pathways
dc.subject.meshAnti-Bacterial Agents
dc.subject.meshBacillus
dc.subject.meshBenzhydryl Compounds
dc.subject.meshBiodegradation, Environmental
dc.subject.meshGastrointestinal Microbiome
dc.subject.meshGenome, Bacterial
dc.subject.meshHumans
dc.subject.meshMicrobial Sensitivity Tests
dc.subject.meshPhenols
dc.subject.meshPhylogeny
dc.subject.meshRNA, Ribosomal, 16S
dc.subject.meshSignal Transduction
dc.titleRepresentative Bacillus sp. AM1 from Gut Microbiota Harbor Versatile Molecular Pathways for Bisphenol A Biodegradation.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number22

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PMC8125285.pdf
Size:
1.9 MB
Format:
Adobe Portable Document Format