Molecular Docking Optimization in the Context of Multi-Drug Resistant and Sensitive EGFR Mutants.

dc.contributor.authorGarcía-Godoy, María Jesús
dc.contributor.authorLópez-Camacho, Esteban
dc.contributor.authorGarcía-Nieto, José
dc.contributor.authorNebro, Antonio J
dc.contributor.authorAldana-Montes, José F
dc.date.accessioned2025-01-07T12:25:45Z
dc.date.available2025-01-07T12:25:45Z
dc.date.issued2016-11-19
dc.description.abstractThe human Epidermal Growth Factor (EGFR) plays an important role in signaling pathways, such as cell proliferation and migration. Mutations like G719S, L858R, T790M, G719S/T790M or T790M/L858R can alter its conformation, and, therefore, drug responses from lung cancer patients. In this context, candidate drugs are being tested and in silico studies are necessary to know how these mutations affect the ligand binding site. This problem can be tackled by using a multi-objective approach applied to the molecular docking problem. According to the literature, few studies are related to the application of multi-objective approaches by minimizing two or more objectives in drug discovery. In this study, we have used four algorithms (NSGA-II, GDE3, SMPSO and MOEA/D) to minimize two objectives: the ligand-receptor intermolecular energy and the RMSD score. We have prepared a set of instances that includes the wild-type EGFR kinase domain and the same receptor with somatic mutations, and then we assessed the performance of the algorithms by applying a quality indicator to evaluate the convergence and diversity of the reference fronts. The MOEA/D algorithm yields the best solutions to these docking problems. The obtained solutions were analyzed, showing promising results to predict candidate EGFR inhibitors by using this multi-objective approach.
dc.identifier.doi10.3390/molecules21111575
dc.identifier.essn1420-3049
dc.identifier.pmcPMC6274512
dc.identifier.pmid27869781
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC6274512/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/1420-3049/21/11/1575/pdf?version=1479548316
dc.identifier.urihttps://hdl.handle.net/10668/24604
dc.issue.number11
dc.journal.titleMolecules (Basel, Switzerland)
dc.journal.titleabbreviationMolecules
dc.language.isoen
dc.organizationFundación Pública Andaluza Progreso y Salud
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectEpidermal Growth Factor Receptor
dc.subjectEpidermal Growth Factor Receptor mutants
dc.subjectdrug resistance
dc.subjectepidermal growth factor
dc.subjectmetaheuristics
dc.subjectmolecular docking
dc.subjectmulti-objective optimization
dc.subject.meshAlgorithms
dc.subject.meshBinding Sites
dc.subject.meshDrug Resistance, Multiple
dc.subject.meshDrug Resistance, Neoplasm
dc.subject.meshErbB Receptors
dc.subject.meshHumans
dc.subject.meshLigands
dc.subject.meshMolecular Conformation
dc.subject.meshMolecular Docking Simulation
dc.subject.meshMolecular Dynamics Simulation
dc.subject.meshProtein Binding
dc.subject.meshProtein Kinase Inhibitors
dc.subject.meshQuantitative Structure-Activity Relationship
dc.titleMolecular Docking Optimization in the Context of Multi-Drug Resistant and Sensitive EGFR Mutants.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number21

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PMC6274512.pdf
Size:
3.85 MB
Format:
Adobe Portable Document Format