Efficient semantic place categorization by a robot through active line-of-sight selection

No Thumbnail Available
Luis Matez-Bandera, Jose
Monroy, Javier
Gonzalez-Jimenez, Javier
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Journal Issue
In this paper, we present an attention mechanism for mobile robots to face the problem of place categorization. Our approach, which is based on active perception, aims to capture images with characteristic or distinctive details of the environment that can be exploited to improve the efficiency (quickness and accuracy) of the place categorization. To do so, at each time moment, our proposal selects the most informative view by controlling the line-of-sight of the robot's camera through a pan-only unit. We root our proposal on an information maximization scheme, formalized as a next-best-view problem through a Markov Decision Process (MDP) model. The latter exploits the short-time estimated navigation path of the robot to anticipate the next robot's movements and make consistent decisions. We demonstrate over two datasets, with simulated and real data, that our proposal generalizes well for the two main paradigms of place categorization (object-based and image-based), outperforming typical camera-configurations (fixed and continuously-rotating) and a pure-exploratory approach, both in quickness and accuracy.(c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (
MeSH Terms
DeCS Terms
CIE Terms
Semantic knowledge, Mobile robots, Attention mechanism, Place categorization, Markov decision processes, Indoor environments, Integration, Vision, System