A plasma metabolomic signature discloses human breast cancer.

dc.contributor.authorJové, Mariona
dc.contributor.authorCollado, Ricardo
dc.contributor.authorQuiles, José Luís
dc.contributor.authorRamírez-Tortosa, Mari-Carmen
dc.contributor.authorSol, Joaquim
dc.contributor.authorRuiz-Sanjuan, Maria
dc.contributor.authorFernandez, Mónica
dc.contributor.authorde la Torre Cabrera, Capilla
dc.contributor.authorRamírez-Tortosa, Cesar
dc.contributor.authorGranados-Principal, Sergio
dc.contributor.authorSánchez-Rovira, Pedro
dc.contributor.authorPamplona, Reinald
dc.date.accessioned2025-01-07T13:00:33Z
dc.date.available2025-01-07T13:00:33Z
dc.date.issued2017
dc.description.abstractMetabolomics is the comprehensive global study of metabolites in biological samples. In this retrospective pilot study we explored whether serum metabolomic profile can discriminate the presence of human breast cancer irrespective of the cancer subtype. Plasma samples were analyzed from healthy women (n = 20) and patients with breast cancer after diagnosis (n = 91) using a liquid chromatography-mass spectrometry platform. Multivariate statistics and a Random Forest (RF) classifier were used to create a metabolomics panel for the diagnosis of human breast cancer. Metabolomics correctly distinguished between breast cancer patients and healthy control subjects. In the RF supervised class prediction analysis comparing breast cancer and healthy control groups, RF accurately classified 100% both samples of the breast cancer patients and healthy controls. So, the class error for both group in and the out-of-bag error were 0. We also found 1269 metabolites with different concentration in plasma from healthy controls and cancer patients; and basing on exact mass, retention time and isotopic distribution we identified 35 metabolites. These metabolites mostly support cell growth by providing energy and building stones for the synthesis of essential biomolecules, and function as signal transduction molecules. The collective results of RF, significance testing, and false discovery rate analysis identified several metabolites that were strongly associated with breast cancer. In breast cancer a metabolomics signature of cancer exists and can be detected in patient plasma irrespectively of the breast cancer type.
dc.identifier.doi10.18632/oncotarget.14521
dc.identifier.essn1949-2553
dc.identifier.pmcPMC5386702
dc.identifier.pmid28076849
dc.identifier.pubmedURLhttps://pmc.ncbi.nlm.nih.gov/articles/PMC5386702/pdf
dc.identifier.unpaywallURLhttp://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=14521&path%5B%5D=46329
dc.identifier.urihttps://hdl.handle.net/10668/25127
dc.issue.number12
dc.journal.titleOncotarget
dc.journal.titleabbreviationOncotarget
dc.language.isoen
dc.organizationSAS - Hospital Universitario de Jerez de la Frontera
dc.organizationSAS - Hospital Universitario Virgen Macarena
dc.page.number19522-19533
dc.pubmedtypeComparative Study
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectbiomarker
dc.subjectbreast cancer
dc.subjectmass spectrometry
dc.subjectmetabolites
dc.subjectmetabolomics
dc.subject.meshBiomarkers, Tumor
dc.subject.meshBreast Neoplasms
dc.subject.meshCase-Control Studies
dc.subject.meshFemale
dc.subject.meshFollow-Up Studies
dc.subject.meshGas Chromatography-Mass Spectrometry
dc.subject.meshHumans
dc.subject.meshMetabolome
dc.subject.meshMetabolomics
dc.subject.meshPilot Projects
dc.subject.meshPlasma
dc.subject.meshRetrospective Studies
dc.titleA plasma metabolomic signature discloses human breast cancer.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number8

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
PMC5386702.pdf
Size:
3.28 MB
Format:
Adobe Portable Document Format