Road pollution estimation from vehicle tracking in surveillance videos by deep convolutional neural networks

dc.contributor.authorGarcia-Gonzalez, Jorge
dc.contributor.authorMolina-Cabello, Miguel A.
dc.contributor.authorLuque-Baena, Rafael M.
dc.contributor.authorOrtiz-de-Lazcano-Lobato, Juan M.
dc.contributor.authorLopez-Rubio, Ezequiel
dc.contributor.authoraffiliation[Garcia-Gonzalez, Jorge] Univ Malaga, Dept Comp Languages & Comp Sci, Bulevar Louis Pasteur 35, Malaga 29071, SpainBiomed Res Inst Malaga IBIMA, C Doctor Miguel Diaz Recio 28, Malaga 29010, Spain
dc.contributor.funderMinistry of Science, Innovation and Universities of Spain
dc.contributor.funderAutonomous Government of Andalusia (Spain)
dc.contributor.funderEuropean Regional Development Fund (ERDF)
dc.contributor.funderUniversity of Malaga (Spain)
dc.contributor.funderNVIDIA Corporation
dc.contributor.funderUniversidad de Malaga
dc.contributor.funderInstituto de Investigacion Biomedica de Malaga-IBIMA
dc.contributor.funderUniversity of Malaga/CBUA
dc.date.accessioned2025-01-07T15:24:53Z
dc.date.available2025-01-07T15:24:53Z
dc.date.issued2021-10-14
dc.description.abstractAir quality and reduction of emissions in the transport sector are determinant factors in achieving a sustainable global climate. The monitoring of emissions in traffic routes can help to improve route planning and to design strategies that may make the pollution levels to be reduced. In this work, a method which detects the pollution levels of transport vehicles from the images of IP cameras by means of computer vision techniques and neural networks is proposed. Specifically, for each sequence of images, a homography is calculated to correct the camera perspective and determine the real distance for each pixel. Subsequently, the trajectory of each vehicle is computed by applying convolutional neural networks for object detection and tracking algorithms. Finally, the speed in each frame and the pollution emitted by each vehicle are determined. Experimental results on several datasets available in the literature support the feasibility and scalability of the system as an emission control strategy. (C) 2021 The Author(s). Published by Elsevier B.V.
dc.identifier.doi10.1016/j.asoc.2021.107950
dc.identifier.essn1872-9681
dc.identifier.issn1568-4946
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.asoc.2021.107950
dc.identifier.urihttps://hdl.handle.net/10668/27122
dc.identifier.wosID729815000002
dc.journal.titleApplied soft computing
dc.journal.titleabbreviationAppl. soft. comput.
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga - Plataforma Bionand (IBIMA)
dc.publisherElsevier
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectTraffic air pollution
dc.subjectObject detection
dc.subjectDeep learning
dc.subjectVideo surveillance
dc.subjectAir-pollution
dc.titleRoad pollution estimation from vehicle tracking in surveillance videos by deep convolutional neural networks
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number113
dc.wostypeArticle

Files