Please use this identifier to cite or link to this item:
http://hdl.handle.net/10668/17815
Title: | Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation. |
Authors: | Guijo-Rubio, David Briceño, Javier Gutiérrez, Pedro Antonio Ayllón, Maria Dolores Ciria, Rubén Hervás-Martínez, César |
metadata.dc.subject.mesh: | Bayes Theorem Data Interpretation, Statistical Databases, Factual Histocompatibility Testing Humans Liver Transplantation Logistic Models Support Vector Machine Tissue Donors Tissue and Organ Procurement Transplant Recipients |
Issue Date: | 21-May-2021 |
Abstract: | Donor-Recipient (D-R) matching is one of the main challenges to be fulfilled nowadays. Due to the increasing number of recipients and the small amount of donors in liver transplantation, the allocation method is crucial. In this paper, to establish a fair comparison, the United Network for Organ Sharing database was used with 4 different end-points (3 months, and 1, 2 and 5 years), with a total of 39, 189 D-R pairs and 28 donor and recipient variables. Modelling techniques were divided into two groups: 1) classical statistical methods, including Logistic Regression (LR) and Naïve Bayes (NB), and 2) standard machine learning techniques, including Multilayer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB) or Support Vector Machines (SVM), among others. The methods were compared with standard scores, MELD, SOFT and BAR. For the 5-years end-point, LR (AUC = 0.654) outperformed several machine learning techniques, such as MLP (AUC = 0.599), GB (AUC = 0.600), SVM (AUC = 0.624) or RF (AUC = 0.644), among others. Moreover, LR also outperformed standard scores. The same pattern was reproduced for the others 3 end-points. Complex machine learning methods were not able to improve the performance of liver allocation, probably due to the implicit limitations associated to the collection process of the database. |
URI: | http://hdl.handle.net/10668/17815 |
metadata.dc.identifier.doi: | 10.1371/journal.pone.0252068 |
Appears in Collections: | Producción 2020 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
PMC8139468.pdf | 1,36 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License