Publication:
FibroGENE: A gene-based model for staging liver fibrosis.

dc.contributor.authorEslam, Mohammed
dc.contributor.authorHashem, Ahmed M
dc.contributor.authorRomero-Gomez, Manuel
dc.contributor.authorBerg, Thomas
dc.contributor.authorDore, Gregory J
dc.contributor.authorMangia, Alessandra
dc.contributor.authorChan, Henry Lik Yuen
dc.contributor.authorIrving, William L
dc.contributor.authorSheridan, David
dc.contributor.authorAbate, Maria Lorena
dc.contributor.authorAdams, Leon A
dc.contributor.authorWeltman, Martin
dc.contributor.authorBugianesi, Elisabetta
dc.contributor.authorSpengler, Ulrich
dc.contributor.authorShaker, Olfat
dc.contributor.authorFischer, Janett
dc.contributor.authorMollison, Lindsay
dc.contributor.authorCheng, Wendy
dc.contributor.authorNattermann, Jacob
dc.contributor.authorRiordan, Stephen
dc.contributor.authorMiele, Luca
dc.contributor.authorKelaeng, Kebitsaone Simon
dc.contributor.authorAmpuero, Javier
dc.contributor.authorAhlenstiel, Golo
dc.contributor.authorMcLeod, Duncan
dc.contributor.authorPowell, Elizabeth
dc.contributor.authorLiddle, Christopher
dc.contributor.authorDouglas, Mark W
dc.contributor.authorBooth, David R
dc.contributor.authorGeorge, Jacob
dc.contributor.authorInternational Liver Disease Genetics Consortium (ILDGC)
dc.date.accessioned2023-01-25T08:30:16Z
dc.date.available2023-01-25T08:30:16Z
dc.date.issued2015-12-01
dc.description.abstractThe extent of liver fibrosis predicts long-term outcomes, and hence impacts management and therapy. We developed a non-invasive algorithm to stage fibrosis using non-parametric, machine learning methods designed for predictive modeling, and incorporated an invariant genetic marker of liver fibrosis risk. Of 4277 patients with chronic liver disease, 1992 with chronic hepatitis C (derivation cohort) were analyzed to develop the model, and subsequently validated in an independent cohort of 1242 patients. The model was assessed in cohorts with chronic hepatitis B (CHB) (n=555) and non-alcoholic fatty liver disease (NAFLD) (n=488). Model performance was compared to FIB-4 and APRI, and also to the NAFLD fibrosis score (NFS) and Forns' index, in those with NAFLD. Significant fibrosis (⩾F2) was similar in the derivation (48.4%) and validation (47.4%) cohorts. The FibroGENE-DT yielded the area under the receiver operating characteristic curve (AUROCs) of 0.87, 0.85 and 0.804 for the prediction of fast fibrosis progression, cirrhosis and significant fibrosis risk, respectively, with comparable results in the validation cohort. The model performed well in NAFLD and CHB with AUROCs of 0.791, and 0.726, respectively. The negative predictive value to exclude cirrhosis was>0.96 in all three liver diseases. The AUROC of the FibroGENE-DT performed better than FIB-4, APRI, and NFS and Forns' index in most comparisons. A non-invasive decision tree model can predict liver fibrosis risk and aid decision making.
dc.identifier.doi10.1016/j.jhep.2015.11.008
dc.identifier.essn1600-0641
dc.identifier.pmid26592354
dc.identifier.unpaywallURLhttps://iris.unito.it/bitstream/2318/1637093/1/Eslam%20M_J%20Hepatol%202016.doc
dc.identifier.urihttp://hdl.handle.net/10668/9627
dc.issue.number2
dc.journal.titleJournal of hepatology
dc.journal.titleabbreviationJ Hepatol
dc.language.isoen
dc.organizationÁrea de Gestión Sanitaria Sur de Sevilla
dc.organizationÁrea de Gestión Sanitaria Sur de Sevilla
dc.organizationAGS - Sur de Sevilla
dc.organizationAGS - Sur de Sevilla
dc.page.number390-398
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rights.accessRightsopen access
dc.subjectChronic hepatitis B
dc.subjectChronic hepatitis C
dc.subjectData mining analysis
dc.subjectFibrosis
dc.subjectIFNL
dc.subjectNASH
dc.subjectNon-alcoholic steatohepatitis
dc.subject.meshAdult
dc.subject.meshAlgorithms
dc.subject.meshBiopsy
dc.subject.meshDisease Progression
dc.subject.meshFemale
dc.subject.meshGenetic Markers
dc.subject.meshHepatitis, Chronic
dc.subject.meshHumans
dc.subject.meshInterleukins
dc.subject.meshLiver
dc.subject.meshLiver Cirrhosis
dc.subject.meshMale
dc.subject.meshMiddle Aged
dc.subject.meshMutation
dc.subject.meshNon-alcoholic Fatty Liver Disease
dc.subject.meshPatient Acuity
dc.subject.meshPolymorphism, Single Nucleotide
dc.subject.meshPredictive Value of Tests
dc.subject.meshPrognosis
dc.subject.meshReproducibility of Results
dc.subject.meshResearch Design
dc.subject.meshRisk Assessment
dc.titleFibroGENE: A gene-based model for staging liver fibrosis.
dc.typeresearch article
dc.type.hasVersionSMUR
dc.volume.number64
dspace.entity.typePublication

Files