Publication:
What lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics.

dc.contributor.authorSoler-Toscano, Fernando
dc.contributor.authorGaladí, Javier A
dc.contributor.authorEscrichs, Anira
dc.contributor.authorSanz Perl, Yonatan
dc.contributor.authorLópez-González, Ane
dc.contributor.authorSitt, Jacobo D
dc.contributor.authorAnnen, Jitka
dc.contributor.authorGosseries, Olivia
dc.contributor.authorThibaut, Aurore
dc.contributor.authorPanda, Rajanikant
dc.contributor.authorEsteban, Francisco J
dc.contributor.authorLaureys, Steven
dc.contributor.authorKringelbach, Morten L
dc.contributor.authorLanga, José A
dc.contributor.authorDeco, Gustavo
dc.date.accessioned2023-05-03T13:36:14Z
dc.date.available2023-05-03T13:36:14Z
dc.date.issued2022-09-06
dc.description.abstractThe self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or 'information structure'), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.
dc.identifier.doi10.1371/journal.pcbi.1010412
dc.identifier.essn1553-7358
dc.identifier.pmcPMC9481177
dc.identifier.pmid36067227
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9481177/pdf
dc.identifier.unpaywallURLhttps://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010412&type=printable
dc.identifier.urihttp://hdl.handle.net/10668/20412
dc.issue.number9
dc.journal.titlePLoS computational biology
dc.journal.titleabbreviationPLoS Comput Biol
dc.language.isoen
dc.organizationCATA - Coordinación Autonómica de Trasplantes de Andalucía
dc.page.numbere1010412
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshBrain
dc.subject.meshHumans
dc.subject.meshMagnetic Resonance Imaging
dc.subject.meshNeuroimaging
dc.subject.meshPersistent Vegetative State
dc.subject.meshWakefulness
dc.titleWhat lies underneath: Precise classification of brain states using time-dependent topological structure of dynamics.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number18
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC9481177.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format