Publication:
Stock management in hospital pharmacy using chance-constrained model predictive control.

No Thumbnail Available

Date

2015-12-02

Authors

Jurado, I
Maestre, J M
Velarde, P
Ocampo-Martinez, C
Fernández, I
Tejera, B Isla
Prado, J R Del

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics
Google Scholar
Export

Research Projects

Organizational Units

Journal Issue

Abstract

One of the most important problems in the pharmacy department of a hospital is stock management. The clinical need for drugs must be satisfied with limited work labor while minimizing the use of economic resources. The complexity of the problem resides in the random nature of the drug demand and the multiple constraints that must be taken into account in every decision. In this article, chance-constrained model predictive control is proposed to deal with this problem. The flexibility of model predictive control allows taking into account explicitly the different objectives and constraints involved in the problem while the use of chance constraints provides a trade-off between conservativeness and efficiency. The solution proposed is assessed to study its implementation in two Spanish hospitals.

Description

MeSH Terms

Inventories, Hospital
Models, Organizational
Pharmacy Service, Hospital

DeCS Terms

CIE Terms

Keywords

Chance constraints, Hospital pharmacy, Inventory management, Model predictive control, Pharmacy Management Stockout Risk, Stochastic Control

Citation