Publication:
The CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency.

dc.contributor.authorGuarás, Adela
dc.contributor.authorPerales-Clemente, Ester
dc.contributor.authorCalvo, Enrique
dc.contributor.authorAcín-Pérez, Rebeca
dc.contributor.authorLoureiro-Lopez, Marta
dc.contributor.authorPujol, Claire
dc.contributor.authorMartínez-Carrascoso, Isabel
dc.contributor.authorNuñez, Estefanía
dc.contributor.authorGarcía-Marqués, Fernando
dc.contributor.authorRodríguez-Hernández, María Angeles
dc.contributor.authorCortés, Ana
dc.contributor.authorDiaz, Francisca
dc.contributor.authorPérez-Martos, Acisclo
dc.contributor.authorMoraes, Carlos T
dc.contributor.authorFernández-Silva, Patricio
dc.contributor.authorTrifunovic, Aleksandra
dc.contributor.authorNavas, Plácido
dc.contributor.authorVazquez, Jesús
dc.contributor.authorEnríquez, Jose A
dc.date.accessioned2023-01-25T08:31:39Z
dc.date.available2023-01-25T08:31:39Z
dc.date.issued2016-03-24
dc.description.abstractElectrons feed into the mitochondrial electron transport chain (mETC) from NAD- or FAD-dependent enzymes. A shift from glucose to fatty acids increases electron flux through FAD, which can saturate the oxidation capacity of the dedicated coenzyme Q (CoQ) pool and result in the generation of reactive oxygen species. To prevent this, the mETC superstructure can be reconfigured through the degradation of respiratory complex I, liberating associated complex III to increase electron flux via FAD at the expense of NAD. Here, we demonstrate that this adaptation is driven by the ratio of reduced to oxidized CoQ. Saturation of CoQ oxidation capacity induces reverse electron transport from reduced CoQ to complex I, and the resulting local generation of superoxide oxidizes specific complex I proteins, triggering their degradation and the disintegration of the complex. Thus, CoQ redox status acts as a metabolic sensor that fine-tunes mETC configuration in order to match the prevailing substrate profile.
dc.identifier.doi10.1016/j.celrep.2016.03.009
dc.identifier.essn2211-1247
dc.identifier.pmid27052170
dc.identifier.unpaywallURLhttp://www.cell.com/article/S2211124716302509/pdf
dc.identifier.urihttp://hdl.handle.net/10668/9974
dc.issue.number1
dc.journal.titleCell reports
dc.journal.titleabbreviationCell Rep
dc.language.isoen
dc.organizationIBIS
dc.page.number197-209
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, N.I.H., Extramural
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.meshAnimals
dc.subject.meshCell Line
dc.subject.meshElectron Transport
dc.subject.meshElectron Transport Chain Complex Proteins
dc.subject.meshFlavin-Adenine Dinucleotide
dc.subject.meshMice
dc.subject.meshMice, Inbred C57BL
dc.subject.meshNAD
dc.subject.meshReactive Oxygen Species
dc.subject.meshUbiquinone
dc.titleThe CoQH2/CoQ Ratio Serves as a Sensor of Respiratory Chain Efficiency.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number15
dspace.entity.typePublication

Files