Publication:
Braiding Thermoplastic and Glass Fibers in Composite Dental Post Improves Their Mechanical Compatibility, In Vitro Experiment

Loading...
Thumbnail Image

Date

2021-04-29

Authors

Abdelkader, Esraa M.
Nassar, Khaled
Melchor, Juan
Rus, Guillermo

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI
Metrics
Google Scholar
Export

Research Projects

Organizational Units

Journal Issue

Abstract

Mechanical compatibility with the human dentin is a considerable issue when fabricating dental fiber posts. To this purpose, this study introduces a new method of fabricating compatible dental posts using braiding techniques of thermoplastic fibers (matrix) with glass fibers (reinforcement). Fifty fiber-reinforced composite (FRC) posts of thermoplastic yarns polypropylene (PP) braided with continuous filaments glass fibers (GFs) for reinforcement, varying in fiber volume fraction (FVF), and core types are fabricated and tested. Posts are performed using a braiding machine, and braids are placed in an aluminum mold. The filled mold is playced inside an oven at the melting temperature of the polypropylene to produce the final post's shape. An ultrasonic test is conducted to measure the shear modulus and Young's modulus of FRC post specimens by measuring the velocities of both the P-wave and S-wave. In order to ensure the accuracy of the measurements, each sample is measured three times, and then the means and standard deviations of each sample are calculated before analyzing the test results using the means of two steps, namely, clustering and comparing the P and R² values of each cluster, which revealed that FVF, fiber mass, and core type of the specimen had a significant effect on the resulted Young's and shear modulus. The results indicate that the proposed method can fabricate competitive dental posts with regard to different fabricating variables. The samples show Young's modulus ranges of from 10.08 GPa to 31.83 GPa. The following tested hypothesis is supported: the braiding technique of thermoplastic fibers with glass fibers will improve the mechanical compatibility of the resulting posts (ex vivo).

Description

MeSH Terms

Medical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humans
Medical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Elements::Metals, Light::Aluminum
Medical Subject Headings::Chemicals and Drugs::Organic Chemicals::Hydrocarbons::Hydrocarbons, Acyclic::Alkenes::Polyenes::Polypropylenes
Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Thermodynamics::Temperature
Medical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Physics::Acoustics::Ultrasonics
Medical Subject Headings::Anatomy::Stomatognathic System::Mouth::Dentition::Tooth Components::Dentin
Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Cluster Analysis

DeCS Terms

CIE Terms

Keywords

Dental materials, Root canal posts, Fiber-reinforced composites (FRCs), Young’s modulus, Shear modulus, Fiber volume fraction (FVF), Endodontic, Fiberglass, Polypropylene, Materiales dentales, Cavidad pulpar, Módulo de elasticidad, Diente no vital, Polipropilenos

Citation

Abdelkader EM, Nassar K, Melchor J, Rus G. Braiding Thermoplastic and Glass Fibers in Composite Dental Post Improves Their Mechanical Compatibility, In Vitro Experiment. Materials. 2021 Apr 29;14(9):2294