Publication: COVID-19 contagion forecasting framework based on curve decomposition and evolutionary artificial neural networks: A case study in Andalusia, Spain.
dc.contributor.author | Diaz-Lozano, Miguel | |
dc.contributor.author | Guijo-Rubio, David | |
dc.contributor.author | Gutierrez, Pedro Antonio | |
dc.contributor.author | Gomez-Orellana, Antonio Manuel | |
dc.contributor.author | Tuñez, Isaac | |
dc.contributor.author | Ortigosa-Moreno, Luis | |
dc.contributor.author | Romanos-Rodriguez, Armando | |
dc.contributor.author | Padillo-Ruiz, Javier | |
dc.contributor.author | Hervas-Martinez, Cesar | |
dc.contributor.funder | Ministerio de Economía y Competitividad del Gobierno de España y Fondos FEDER | |
dc.contributor.funder | Agencia Española de Investigación | |
dc.contributor.funder | Consejería de Salud y Familia, Junta de Andalucía | |
dc.contributor.funder | Consejería de Transformación Económica, Industria, Conocimiento y Universidades (Junta de Andalucía) | |
dc.date.accessioned | 2023-05-03T14:59:01Z | |
dc.date.available | 2023-05-03T14:59:01Z | |
dc.date.issued | 2022-06-22 | |
dc.description.abstract | Many types of research have been carried out with the aim of combating the COVID-19 pandemic since the first outbreak was detected in Wuhan, China. Anticipating the evolution of an outbreak helps to devise suitable economic, social and health care strategies to mitigate the effects of the virus. For this reason, predicting the SARS-CoV-2 transmission rate has become one of the most important and challenging problems of the past months. In this paper, we apply a two-stage mid and long-term forecasting framework to the epidemic situation in eight districts of Andalusia, Spain. First, an analytical procedure is performed iteratively to fit polynomial curves to the cumulative curve of contagions. Then, the extracted information is used for estimating the parameters and structure of an evolutionary artificial neural network with hybrid architectures (i.e., with different basis functions for the hidden nodes) while considering single and simultaneous time horizon estimations. The results obtained demonstrate that including polynomial information extracted during the training stage significantly improves the mid- and long-term estimations in seven of the eight considered districts. The increase in average accuracy (for the joint mid- and long-term horizon forecasts) is 37.61% and 35.53% when considering the single and simultaneous forecast approaches, respectively. | |
dc.description.version | Si | |
dc.identifier.citation | Díaz-Lozano M, Guijo-Rubio D, Gutiérrez PA, Gómez-Orellana AM, Túñez I, Ortigosa-Moreno L, et al. COVID-19 contagion forecasting framework based on curve decomposition and evolutionary artificial neural networks: A case study in Andalusia, Spain. Expert Syst Appl. 2022 Nov 30;207:117977 | |
dc.identifier.doi | 10.1016/j.eswa.2022.117977 | |
dc.identifier.issn | 0957-4174 | |
dc.identifier.pmc | PMC9235375 | |
dc.identifier.pmid | 35784094 | |
dc.identifier.pubmedURL | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235375/pdf | |
dc.identifier.unpaywallURL | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235375 | |
dc.identifier.uri | http://hdl.handle.net/10668/22222 | |
dc.journal.title | Expert systems with applications | |
dc.journal.titleabbreviation | Expert Syst Appl | |
dc.language.iso | en | |
dc.organization | Instituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC | |
dc.organization | Hospital Universitario Virgen del Rocío | |
dc.organization | Fundación Pública Andaluz Progreso y Salud-FPS | |
dc.page.number | 19 | |
dc.provenance | Realizada la curación de contenido 06/09/2024 | |
dc.publisher | Elsevier | |
dc.pubmedtype | Journal Article | |
dc.relation.projectID | PID2020-115454GB-C22 | |
dc.relation.projectID | PS-2020-780 | |
dc.relation.projectID | UCO-1261651 | |
dc.relation.projectID | PREDOC-00489 | |
dc.relation.projectID | TIN2017-85887-C2-1-P | |
dc.relation.publisherversion | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235375/ | |
dc.rights.accessRights | open access | |
dc.subject | COVID-19 contagion forecasting | |
dc.subject | Curve decomposition | |
dc.subject | Evolutionary artificial neural networks | |
dc.subject | Time series | |
dc.subject.decs | Brotes de enfermedades | |
dc.subject.decs | España | |
dc.subject.decs | Pandemias | |
dc.subject.decs | Redes neurales de la computación | |
dc.subject.mesh | SARS-CoV-2 | |
dc.subject.mesh | COVID-19 | |
dc.subject.mesh | Pandemics | |
dc.subject.mesh | Spain | |
dc.subject.mesh | Disease Outbreaks | |
dc.subject.mesh | Neural Networks, Computer | |
dc.title | COVID-19 contagion forecasting framework based on curve decomposition and evolutionary artificial neural networks: A case study in Andalusia, Spain. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 207 | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1