Publication:
COVID-19 contagion forecasting framework based on curve decomposition and evolutionary artificial neural networks: A case study in Andalusia, Spain.

dc.contributor.authorDiaz-Lozano, Miguel
dc.contributor.authorGuijo-Rubio, David
dc.contributor.authorGutierrez, Pedro Antonio
dc.contributor.authorGomez-Orellana, Antonio Manuel
dc.contributor.authorTuñez, Isaac
dc.contributor.authorOrtigosa-Moreno, Luis
dc.contributor.authorRomanos-Rodriguez, Armando
dc.contributor.authorPadillo-Ruiz, Javier
dc.contributor.authorHervas-Martinez, Cesar
dc.contributor.funderMinisterio de Economía y Competitividad del Gobierno de España y Fondos FEDER
dc.contributor.funderAgencia Española de Investigación
dc.contributor.funderConsejería de Salud y Familia, Junta de Andalucía
dc.contributor.funderConsejería de Transformación Económica, Industria, Conocimiento y Universidades (Junta de Andalucía)
dc.date.accessioned2023-05-03T14:59:01Z
dc.date.available2023-05-03T14:59:01Z
dc.date.issued2022-06-22
dc.description.abstractMany types of research have been carried out with the aim of combating the COVID-19 pandemic since the first outbreak was detected in Wuhan, China. Anticipating the evolution of an outbreak helps to devise suitable economic, social and health care strategies to mitigate the effects of the virus. For this reason, predicting the SARS-CoV-2 transmission rate has become one of the most important and challenging problems of the past months. In this paper, we apply a two-stage mid and long-term forecasting framework to the epidemic situation in eight districts of Andalusia, Spain. First, an analytical procedure is performed iteratively to fit polynomial curves to the cumulative curve of contagions. Then, the extracted information is used for estimating the parameters and structure of an evolutionary artificial neural network with hybrid architectures (i.e., with different basis functions for the hidden nodes) while considering single and simultaneous time horizon estimations. The results obtained demonstrate that including polynomial information extracted during the training stage significantly improves the mid- and long-term estimations in seven of the eight considered districts. The increase in average accuracy (for the joint mid- and long-term horizon forecasts) is 37.61% and 35.53% when considering the single and simultaneous forecast approaches, respectively.
dc.description.versionSi
dc.identifier.citationDíaz-Lozano M, Guijo-Rubio D, Gutiérrez PA, Gómez-Orellana AM, Túñez I, Ortigosa-Moreno L, et al. COVID-19 contagion forecasting framework based on curve decomposition and evolutionary artificial neural networks: A case study in Andalusia, Spain. Expert Syst Appl. 2022 Nov 30;207:117977
dc.identifier.doi10.1016/j.eswa.2022.117977
dc.identifier.issn0957-4174
dc.identifier.pmcPMC9235375
dc.identifier.pmid35784094
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235375/pdf
dc.identifier.unpaywallURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235375
dc.identifier.urihttp://hdl.handle.net/10668/22222
dc.journal.titleExpert systems with applications
dc.journal.titleabbreviationExpert Syst Appl
dc.language.isoen
dc.organizationInstituto Maimónides de Investigación Biomédica de Córdoba-IMIBIC
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationFundación Pública Andaluz Progreso y Salud-FPS
dc.page.number19
dc.provenanceRealizada la curación de contenido 06/09/2024
dc.publisherElsevier
dc.pubmedtypeJournal Article
dc.relation.projectIDPID2020-115454GB-C22
dc.relation.projectIDPS-2020-780
dc.relation.projectIDUCO-1261651
dc.relation.projectIDPREDOC-00489
dc.relation.projectIDTIN2017-85887-C2-1-P
dc.relation.publisherversionhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235375/
dc.rights.accessRightsopen access
dc.subjectCOVID-19 contagion forecasting
dc.subjectCurve decomposition
dc.subjectEvolutionary artificial neural networks
dc.subjectTime series
dc.subject.decsBrotes de enfermedades
dc.subject.decsEspaña
dc.subject.decsPandemias
dc.subject.decsRedes neurales de la computación
dc.subject.meshSARS-CoV-2
dc.subject.meshCOVID-19
dc.subject.meshPandemics
dc.subject.meshSpain
dc.subject.meshDisease Outbreaks
dc.subject.meshNeural Networks, Computer
dc.titleCOVID-19 contagion forecasting framework based on curve decomposition and evolutionary artificial neural networks: A case study in Andalusia, Spain.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number207
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC9235375.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format