Publication:
Differential Treatments Based on Drug-induced Gene Expression Signatures and Longitudinal Systemic Lupus Erythematosus Stratification.

dc.contributor.authorToro-Domínguez, Daniel
dc.contributor.authorLopez-Domínguez, Raúl
dc.contributor.authorGarcía Moreno, Adrián
dc.contributor.authorVillatoro-García, Juan A
dc.contributor.authorMartorell-Marugán, Jordi
dc.contributor.authorGoldman, Daniel
dc.contributor.authorPetri, Michelle
dc.contributor.authorWojdyla, Daniel
dc.contributor.authorPons-Estel, Bernardo A
dc.contributor.authorIsenberg, David
dc.contributor.authorMorales-Montes de Oca, Gabriela
dc.contributor.authorTrejo-Zambrano, María Isabel
dc.contributor.authorGarcía González, Benjamín
dc.contributor.authorRosetti, Florencia
dc.contributor.authorGómez-Martín, Diana
dc.contributor.authorRomero-Díaz, Juanita
dc.contributor.authorCarmona-Sáez, Pedro
dc.contributor.authorAlarcón-Riquelme, Marta E
dc.date.accessioned2023-02-08T14:49:40Z
dc.date.available2023-02-08T14:49:40Z
dc.date.issued2019-10-29
dc.description.abstractSystemic lupus erythematosus (SLE) is a heterogeneous disease with unpredictable patterns of activity. Patients with similar activity levels may have different prognosis and molecular abnormalities. In this study, we aimed to measure the main differences in drug-induced gene expression signatures across SLE patients and to evaluate the potential for clinical data to build a machine learning classifier able to predict the SLE subset for individual patients. SLE transcriptomic data from two cohorts were compared with drug-induced gene signatures from the CLUE database to compute a connectivity score that reflects the capability of a drug to revert the patient signatures. Patient stratification based on drug connectivity scores revealed robust clusters of SLE patients identical to the clusters previously obtained through longitudinal gene expression data, implying that differential treatment depends on the cluster to which patients belongs. The best drug candidates found, mTOR inhibitors or those reducing oxidative stress, showed stronger cluster specificity. We report that drug patterns for reverting disease gene expression follow the cell-specificity of the disease clusters. We used 2 cohorts to train and test a logistic regression model that we employed to classify patients from 3 independent cohorts into the SLE subsets and provide a clinically useful model to predict subset assignment and drug efficacy.
dc.identifier.doi10.1038/s41598-019-51616-9
dc.identifier.essn2045-2322
dc.identifier.pmcPMC6820741
dc.identifier.pmid31664045
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820741/pdf
dc.identifier.unpaywallURLhttps://www.nature.com/articles/s41598-019-51616-9.pdf
dc.identifier.urihttp://hdl.handle.net/10668/15533
dc.issue.number1
dc.journal.titleScientific reports
dc.journal.titleabbreviationSci Rep
dc.language.isoen
dc.organizationCentro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica-GENYO
dc.page.number15502
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, N.I.H., Extramural
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshCase-Control Studies
dc.subject.meshCluster Analysis
dc.subject.meshCohort Studies
dc.subject.meshFemale
dc.subject.meshHumans
dc.subject.meshLongitudinal Studies
dc.subject.meshLupus Erythematosus, Systemic
dc.subject.meshMale
dc.subject.meshSeverity of Illness Index
dc.subject.meshTranscriptome
dc.titleDifferential Treatments Based on Drug-induced Gene Expression Signatures and Longitudinal Systemic Lupus Erythematosus Stratification.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number9
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC6820741.pdf
Size:
3.49 MB
Format:
Adobe Portable Document Format