Publication:
Risk prediction for estrogen receptor-specific breast cancers in two large prospective cohorts.

Loading...
Thumbnail Image

Date

2018-12-03

Authors

Li, Kuanrong
Anderson, Garnet
Viallon, Vivian
Arveux, Patrick
Kvaskoff, Marina
Fournier, Agnès
Krogh, Vittorio
Tumino, Rosario
Sanchez-Perez, Maria-Jose
Ardanaz, Eva

Advisors

Journal Title

Journal ISSN

Volume Title

Publisher

Metrics
Google Scholar
Export

Research Projects

Organizational Units

Journal Issue

Abstract

Few published breast cancer (BC) risk prediction models consider the heterogeneity of predictor variables between estrogen-receptor positive (ER+) and negative (ER-) tumors. Using data from two large cohorts, we examined whether modeling this heterogeneity could improve prediction. We built two models, for ER+ (ModelER+) and ER- tumors (ModelER-), respectively, in 281,330 women (51% postmenopausal at recruitment) from the European Prospective Investigation into Cancer and Nutrition cohort. Discrimination (C-statistic) and calibration (the agreement between predicted and observed tumor risks) were assessed both internally and externally in 82,319 postmenopausal women from the Women's Health Initiative study. We performed decision curve analysis to compare ModelER+ and the Gail model (ModelGail) regarding their applicability in risk assessment for chemoprevention. Parity, number of full-term pregnancies, age at first full-term pregnancy and body height were only associated with ER+ tumors. Menopausal status, age at menarche and at menopause, hormone replacement therapy, postmenopausal body mass index, and alcohol intake were homogeneously associated with ER+ and ER- tumors. Internal validation yielded a C-statistic of 0.64 for ModelER+ and 0.59 for ModelER-. External validation reduced the C-statistic of ModelER+ (0.59) and ModelGail (0.57). In external evaluation of calibration, ModelER+ outperformed the ModelGail: the former led to a 9% overestimation of the risk of ER+ tumors, while the latter yielded a 22% underestimation of the overall BC risk. Compared with the treat-all strategy, ModelER+ produced equal or higher net benefits irrespective of the benefit-to-harm ratio of chemoprevention, while ModelGail did not produce higher net benefits unless the benefit-to-harm ratio was below 50. The clinical applicability, i.e. the area defined by the net benefit curve and the treat-all and treat-none strategies, was 12.7 × 10- 6 for ModelER+ and 3.0 × 10- 6 for ModelGail. Modeling heterogeneous epidemiological risk factors might yield little improvement in BC risk prediction. Nevertheless, a model specifically predictive of ER+ tumor risk could be more applicable than an omnibus model in risk assessment for chemoprevention.

Description

MeSH Terms

Antineoplastic Agents
Breast Neoplasms
Female
Follow-Up Studies
Humans
Incidence
Middle Aged
Models, Biological
Prognosis
Prospective Studies
Receptors, Estrogen
Risk Assessment
Risk Factors

DeCS Terms

CIE Terms

Keywords

Breast cancer, EPIC, Estrogen receptor, Prospective cohort, Risk prediction, WHI

Citation