Publication: Oxygen regulation of breathing is abolished in mitochondrial complex III-deficient arterial chemoreceptors.
dc.contributor.author | Cabello-Rivera, Daniel | |
dc.contributor.author | Ortega-Sáenz, Patricia | |
dc.contributor.author | Gao, Lin | |
dc.contributor.author | Muñoz-Cabello, Ana M | |
dc.contributor.author | Bonilla-Henao, Victoria | |
dc.contributor.author | Schumacker, Paul T | |
dc.contributor.author | López-Barneo, José | |
dc.date.accessioned | 2023-05-03T13:26:58Z | |
dc.date.available | 2023-05-03T13:26:58Z | |
dc.date.issued | 2022-09-19 | |
dc.description.abstract | Acute oxygen (O2) sensing is essential for adaptation of organisms to hypoxic environments or medical conditions with restricted exchange of gases in the lung. The main acute O2-sensing organ is the carotid body (CB), which contains neurosecretory chemoreceptor (glomus) cells innervated by sensory fibers whose activation by hypoxia elicits hyperventilation and increased cardiac output. Glomus cells have mitochondria with specialized metabolic and electron transport chain (ETC) properties. Reduced mitochondrial complex (MC) IV activity by hypoxia leads to production of signaling molecules (NADH and reactive O2 species) in MCI and MCIII that modulate membrane ion channel activity. We studied mice with conditional genetic ablation of MCIII that disrupts the ETC in the CB and other catecholaminergic tissues. Glomus cells survived MCIII dysfunction but showed selective abolition of responsiveness to hypoxia (increased [Ca2+] and transmitter release) with normal responses to other stimuli. Mitochondrial hypoxic NADH and reactive O2 species signals were also suppressed. MCIII-deficient mice exhibited strong inhibition of the hypoxic ventilatory response and altered acclimatization to sustained hypoxia. These data indicate that a functional ETC, with coupling between MCI and MCIV, is required for acute O2 sensing. O2 regulation of breathing results from the integrated action of mitochondrial ETC complexes in arterial chemoreceptors. | |
dc.identifier.doi | 10.1073/pnas.2202178119 | |
dc.identifier.essn | 1091-6490 | |
dc.identifier.pmc | PMC9522341 | |
dc.identifier.pmid | 36122208 | |
dc.identifier.pubmedURL | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9522341/pdf | |
dc.identifier.unpaywallURL | https://doi.org/10.1073/pnas.2202178119 | |
dc.identifier.uri | http://hdl.handle.net/10668/19667 | |
dc.issue.number | 39 | |
dc.journal.title | Proceedings of the National Academy of Sciences of the United States of America | |
dc.journal.titleabbreviation | Proc Natl Acad Sci U S A | |
dc.language.iso | en | |
dc.organization | Hospital Universitario Virgen del Rocío | |
dc.organization | Instituto de Biomedicina de Sevilla-IBIS | |
dc.page.number | e2202178119 | |
dc.pubmedtype | Journal Article | |
dc.pubmedtype | Research Support, Non-U.S. Gov't | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | acute O2 sensing | |
dc.subject | carotid body glomus cell | |
dc.subject | hypoxia | |
dc.subject | mitochondrial O2 sensing and signaling | |
dc.subject | mitochondrial complex III | |
dc.subject.mesh | Animals | |
dc.subject.mesh | Cell Hypoxia | |
dc.subject.mesh | Electron Transport Complex III | |
dc.subject.mesh | Ion Channels | |
dc.subject.mesh | Mice | |
dc.subject.mesh | NAD | |
dc.subject.mesh | Oxygen | |
dc.subject.mesh | Respiration | |
dc.title | Oxygen regulation of breathing is abolished in mitochondrial complex III-deficient arterial chemoreceptors. | |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 119 | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1