Publication:
Appearance-Based Sequential Robot Localization Using a Patchwise Approximation of a Descriptor Manifold

dc.contributor.authorJaenal, Alberto
dc.contributor.authorMoreno, Francisco-Angel
dc.contributor.authorGonzalez-Jimenez, Javier
dc.contributor.authoraffiliation[Jaenal,A; Moreno,FA; Gonzalez-Jimenez,J] Machine Perception and Intelligent Robotics Group (MAPIR), Department of System Engineering and Automation Biomedical Research Institute of Malaga (IBIMA), University of Malaga, Málaga, Spain.
dc.contributor.funderThis research was funded by: Government of Spain grant number FPU17/04512; by the “I Plan Propio de Investigación, Transferencia y Divulgación Científica” of the University of Málaga; and under projects ARPEGGIO (PID2020-117057) and WISER (DPI2017-84827-R) financed by the Government of Spain and European Regional Development’s funds (FEDER).
dc.date.accessioned2022-07-25T11:27:38Z
dc.date.available2022-07-25T11:27:38Z
dc.date.issued2021-04-02
dc.description.abstractThis paper addresses appearance-based robot localization in 2D with a sparse, lightweight map of the environment composed of descriptor-pose image pairs. Based on previous research in the field, we assume that image descriptors are samples of a low-dimensional Descriptor Manifold that is locally articulated by the camera pose. We propose a piecewise approximation of the geometry of such Descriptor Manifold through a tessellation of so-called Patches of Smooth Appearance Change (PSACs), which defines our appearance map. Upon this map, the presented robot localization method applies both a Gaussian Process Particle Filter (GPPF) to perform camera tracking and a Place Recognition (PR) technique for relocalization within the most likely PSACs according to the observed descriptor. A specific Gaussian Process (GP) is trained for each PSAC to regress a Gaussian distribution over the descriptor for any particle pose lying within that PSAC. The evaluation of the observed descriptor in this distribution gives us a likelihood, which is used as the weight for the particle. Besides, we model the impact of appearance variations on image descriptors as a white noise distribution within the GP formulation, ensuring adequate operation under lighting and scene appearance changes with respect to the conditions in which the map was constructed. A series of experiments with both real and synthetic images show that our method outperforms state-of-the-art appearance-based localization methods in terms of robustness and accuracy, with median errors below 0.3 m and 6°.es_ES
dc.description.versionYeses_ES
dc.identifier.citationJaenal A, Moreno FA, Gonzalez-Jimenez J. Appearance-Based Sequential Robot Localization Using a Patchwise Approximation of a Descriptor Manifold. Sensors. 2021 Apr 2;21(7):2483es_ES
dc.identifier.doi10.3390/s21072483es_ES
dc.identifier.essn1424-8220
dc.identifier.pmcPMC8038242
dc.identifier.pmid33918493es_ES
dc.identifier.urihttp://hdl.handle.net/10668/3818
dc.journal.titleSensors
dc.language.isoen
dc.page.number17 p.
dc.publisherMDPIes_ES
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/21/7/2483/htmes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.accessRightsAcceso abiertoes_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAppearance-based localizationes_ES
dc.subjectComputer visiones_ES
dc.subjectGaussian processeses_ES
dc.subjectManifold learninges_ES
dc.subjectRobot vision systemses_ES
dc.subjectIndoor positioninges_ES
dc.subjectImage manifoldes_ES
dc.subjectDescriptor manifoldes_ES
dc.subjectAprendizajees_ES
dc.subjectDescriptoreses_ES
dc.subjectReconocimiento de normas patrones automatizadases_ES
dc.subjectAmbientees_ES
dc.subjectMétodoses_ES
dc.subjectInteligencia artificiales_ES
dc.subject.meshMedical Subject Headings::Health Care::Environment and Public Health::Environment::Environment, Controlled::Lightinges_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Pattern Recognition, Automatedes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Diagnostic Imaging::Imaging, Three-Dimensionales_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Medical Informatics::Medical Informatics Applications::Decision Making, Computer-Assisted::Diagnosis, Computer-Assisted::Image Interpretation, Computer-Assistedes_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Mathematical Concepts::Probability::Uncertaintyes_ES
dc.subject.meshMedical Subject Headings::Health Care::Environment and Public Health::Environmentes_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Mathematical Concepts::Statistical Distributions::Normal Distributiones_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Artificial Intelligencees_ES
dc.titleAppearance-Based Sequential Robot Localization Using a Patchwise Approximation of a Descriptor Manifoldes_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jaenal_AppearanceBased.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:
Artículo original