Publication:
Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions.

dc.contributor.authorMoreno-Indias, Isabel
dc.contributor.authorLahti, Leo
dc.contributor.authorNedyalkova, Miroslava
dc.contributor.authorElbere, Ilze
dc.contributor.authorRoshchupkin, Gennady
dc.contributor.authorAdilovic, Muhamed
dc.contributor.authorAydemir, Onder
dc.contributor.authorBakir-Gungor, Burcu
dc.contributor.authorSanta Pau, Enrique Carrillo-de
dc.contributor.authorD'Elia, Domenica
dc.contributor.authorDesai, Mahesh S
dc.contributor.authorFalquet, Laurent
dc.contributor.authorGundogdu, Aycan
dc.contributor.authorHron, Karel
dc.contributor.authorKlammsteiner, Thomas
dc.contributor.authorLopes, Marta B
dc.contributor.authorMarcos-Zambrano, Laura Judith
dc.contributor.authorMarques, Cláudia
dc.contributor.authorMason, Michael
dc.contributor.authorMay, Patrick
dc.contributor.authorPašić, Lejla
dc.contributor.authorPio, Gianvito
dc.contributor.authorPongor, Sándor
dc.contributor.authorPromponas, Vasilis J
dc.contributor.authorPrzymus, Piotr
dc.contributor.authorSaez-Rodriguez, Julio
dc.contributor.authorSampri, Alexia
dc.contributor.authorShigdel, Rajesh
dc.contributor.authorStres, Blaz
dc.contributor.authorSuharoschi, Ramona
dc.contributor.authorTruu, Jaak
dc.contributor.authorTruică, Ciprian-Octavian
dc.contributor.authorVilne, Baiba
dc.contributor.authorVlachakis, Dimitrios
dc.contributor.authorYilmaz, Ercument
dc.contributor.authorZeller, Georg
dc.contributor.authorZomer, Aldert L
dc.contributor.authorGómez-Cabrero, David
dc.contributor.authorClaesson, Marcus J
dc.contributor.funderCOST Action CA18131
dc.contributor.funderInstituto de Salud Carlos III
dc.contributor.funderFondo Europeo de Desarrollo Regional-FEDER
dc.contributor.funderScientific Research Center
dc.contributor.funderNIS-3317
dc.contributor.funderNational roadmaps for research infrastructures (RIs)
dc.contributor.funderAcademy of Finland
dc.contributor.funderINTEGROMED
dc.contributor.funderLuxembourg National Research Fund (FNR)
dc.date.accessioned2023-02-09T10:45:29Z
dc.date.available2023-02-09T10:45:29Z
dc.date.issued2021-02-22
dc.description.abstractThe human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 "ML4Microbiome" that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.
dc.description.sponsorshipThis study was supported by the COST Action CA18131 “Statistical and machine learning techniques in human microbiome studies.” IM-I was supported by the “MS type I” program (CP16/00163) from the Instituto de Salud Carlos III and co-funded by Fondo Europeo de Desarrollo Regional-FEDER. MN was grateful for the additional support by the project “Information and Communication Technologies for a Single Digital Market in Science, Education and Security” of the Scientific Research Center, NIS-3317 and National roadmaps for research infrastructures (RIs) grant number NIS-3318. LL was supported by Academy of Finland (decision 295741). IE was supported by H2020-EU.4.b. project “Integration of knowledge and biobank resources in comprehensive translational approach for personalized prevention and treatment of metabolic disorders (INTEGROMED)” (grant agreement ID 857572). MD was supported by the Luxembourg National Research Fund (FNR) CORE grant (C18/BM/12585940).
dc.description.version
dc.identifier.citationMoreno-Indias I, Lahti L, Nedyalkova M, Elbere I, Roshchupkin G, Adilovic M, et al. Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions. Front Microbiol. 2021;12:635781. Published 2021 Feb 22.
dc.identifier.doi10.3389/fmicb.2021.635781
dc.identifier.issn1664-302X
dc.identifier.pmcPMC7937616
dc.identifier.pmid33692771
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937616/pdf
dc.identifier.unpaywallURLhttps://www.frontiersin.org/articles/10.3389/fmicb.2021.635781/pdf
dc.identifier.urihttp://hdl.handle.net/10668/17334
dc.journal.titleFrontiers in microbiology
dc.journal.titleabbreviationFront Microbiol
dc.language.isoen
dc.organizationHospital Universitario Virgen de la Victoria
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.page.number9
dc.provenanceRealizada curación de contenido 10/06/2025
dc.publisherFrontiers
dc.pubmedtypeJournal Article
dc.relation.projectIDCP16/00163
dc.relation.projectIDNIS-3318
dc.relation.projectID295741
dc.relation.projectID857572
dc.relation.projectIDC18/BM/12585940
dc.relation.publisherversionhttps://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2021.635781/full
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectML4Microbiome
dc.subjectbiomarker identification
dc.subjectmachine learning
dc.subjectmicrobiome
dc.subjectpersonalized medicine
dc.subject.decsMicrobiota
dc.subject.decsAprendizaje Automático
dc.subject.decsBiología
dc.subject.decsBenchmarking
dc.subject.decsEstándares de Referencia
dc.subject.decsInvestigación
dc.subject.meshBenchmarking
dc.subject.meshData Science
dc.subject.meshReproducibility of Results
dc.subject.meshMachine Learning
dc.subject.meshResearch Design
dc.subject.meshMicrobiota
dc.subject.meshReference Standards
dc.subject.meshBiology
dc.titleStatistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number12
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC7937616.pdf
Size:
956.31 KB
Format:
Adobe Portable Document Format