Publication:
Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions.

dc.contributor.authorMoreno-Indias, Isabel
dc.contributor.authorLahti, Leo
dc.contributor.authorNedyalkova, Miroslava
dc.contributor.authorElbere, Ilze
dc.contributor.authorRoshchupkin, Gennady
dc.contributor.authorAdilovic, Muhamed
dc.contributor.authorAydemir, Onder
dc.contributor.authorBakir-Gungor, Burcu
dc.contributor.authorSanta Pau, Enrique Carrillo-de
dc.contributor.authorD'Elia, Domenica
dc.contributor.authorDesai, Mahesh S
dc.contributor.authorFalquet, Laurent
dc.contributor.authorGundogdu, Aycan
dc.contributor.authorHron, Karel
dc.contributor.authorKlammsteiner, Thomas
dc.contributor.authorLopes, Marta B
dc.contributor.authorMarcos-Zambrano, Laura Judith
dc.contributor.authorMarques, Cláudia
dc.contributor.authorMason, Michael
dc.contributor.authorMay, Patrick
dc.contributor.authorPašić, Lejla
dc.contributor.authorPio, Gianvito
dc.contributor.authorPongor, Sándor
dc.contributor.authorPromponas, Vasilis J
dc.contributor.authorPrzymus, Piotr
dc.contributor.authorSaez-Rodriguez, Julio
dc.contributor.authorSampri, Alexia
dc.contributor.authorShigdel, Rajesh
dc.contributor.authorStres, Blaz
dc.contributor.authorSuharoschi, Ramona
dc.contributor.authorTruu, Jaak
dc.contributor.authorTruică, Ciprian-Octavian
dc.contributor.authorVilne, Baiba
dc.contributor.authorVlachakis, Dimitrios
dc.contributor.authorYilmaz, Ercument
dc.contributor.authorZeller, Georg
dc.contributor.authorZomer, Aldert L
dc.contributor.authorGómez-Cabrero, David
dc.contributor.authorClaesson, Marcus J
dc.date.accessioned2023-02-09T10:45:29Z
dc.date.available2023-02-09T10:45:29Z
dc.date.issued2021-02-22
dc.description.abstractThe human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 "ML4Microbiome" that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.
dc.identifier.doi10.3389/fmicb.2021.635781
dc.identifier.issn1664-302X
dc.identifier.pmcPMC7937616
dc.identifier.pmid33692771
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937616/pdf
dc.identifier.unpaywallURLhttps://www.frontiersin.org/articles/10.3389/fmicb.2021.635781/pdf
dc.identifier.urihttp://hdl.handle.net/10668/17334
dc.journal.titleFrontiers in microbiology
dc.journal.titleabbreviationFront Microbiol
dc.language.isoen
dc.organizationHospital Universitario Virgen de la Victoria
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.page.number635781
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectML4Microbiome
dc.subjectbiomarker identification
dc.subjectmachine learning
dc.subjectmicrobiome
dc.subjectpersonalized medicine
dc.titleStatistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number12
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC7937616.pdf
Size:
956.31 KB
Format:
Adobe Portable Document Format