Publication:
Place and Object Recognition by CNN-Based COSFIRE Filters

dc.contributor.authorLopez-Antequera, Manuel
dc.contributor.authorVallina, Maria Leyva
dc.contributor.authorStrisciuglio, Nicola
dc.contributor.authorPetkov, Nicolai
dc.contributor.authoraffiliation[Lopez-Antequera, Manuel] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, NL-9712 AK Groningen, Netherlands
dc.contributor.authoraffiliation[Vallina, Maria Leyva] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, NL-9712 AK Groningen, Netherlands
dc.contributor.authoraffiliation[Strisciuglio, Nicola] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, NL-9712 AK Groningen, Netherlands
dc.contributor.authoraffiliation[Petkov, Nicolai] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, NL-9712 AK Groningen, Netherlands
dc.contributor.authoraffiliation[Lopez-Antequera, Manuel] Univ Malaga, MAPIR Grp, Inst Invest Biomed Malaga IBIMA, Malaga 29016, Spain
dc.contributor.funderEuropean Horizon 2020 Program
dc.date.accessioned2023-02-12T02:21:28Z
dc.date.available2023-02-12T02:21:28Z
dc.date.issued2019-01-01
dc.description.abstractCOSFIRE filters are an effective means for detecting and localizing visual patterns. In contrast to a convolutional neural network (CNN), such a filter can be configured by presenting a single training example and it can be applied on images of any size. The main limitation of COSFIRE filters so far was the use of only Gabor and DoGs contributing filters for the configuration of a COSFIRE filter. In this paper, we propose to use a much broader class of contributing filters, namely filters defined by intermediate CNN representations. We apply our proposed method on the MNIST data set, on the butterfly data set, and on a garden data set for place recognition, obtaining accuracies of 99.49%, 96.57%, and 89.84%, respectively. Our method outperforms a CNN-baseline method in which the full CNN representation at a certain layer is used as input to an SVM classifier. It also outperforms traditional non-CNN methods for the studied applications. In the case of place recognition, our method outperforms NetVLAD when only one reference image is used per scene and the two methods perform similarly when many reference images are used.
dc.identifier.doi10.1109/ACCESS.2019.2918267
dc.identifier.issn2169-3536
dc.identifier.unpaywallURLhttps://ieeexplore.ieee.org/ielx7/6287639/8600701/08719902.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18969
dc.identifier.wosID471048200001
dc.journal.titleIeee access
dc.journal.titleabbreviationIeee access
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.page.number66157-66166
dc.publisherIeee-inst electrical electronics engineers inc
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectCOSFIRE filter
dc.subjectCNN
dc.subjectobject recognition
dc.subjectplace recognition
dc.subjectVessel delineation
dc.titlePlace and Object Recognition by CNN-Based COSFIRE Filters
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number7
dc.wostypeArticle
dspace.entity.typePublication

Files