Publication:
Development and evaluation of a machine learning-based in-hospital COVID-19 disease outcome predictor (CODOP): A multicontinental retrospective study.

dc.contributor.authorKlen, Riku
dc.contributor.authorPurohit, Disha
dc.contributor.authorGomez-Huelgas, Ricardo
dc.contributor.authorCasas-Rojo, Jose Manuel
dc.contributor.authorAnton-Santos, Juan Miguel
dc.contributor.authorNuñez-Cortes, Jesus Millan
dc.contributor.authorLumbreras, Carlos
dc.contributor.authorRamos-Rincon, Jose Manuel
dc.contributor.authorGarcia-Barrio, Noelia
dc.contributor.authorPedrera-Jimenez, Miguel
dc.contributor.authorLalueza-Blanco, Antonio
dc.contributor.authorMartin-Escalante, Maria Dolores
dc.contributor.authorRivas-Ruiz, Francisco
dc.contributor.authorOnieva-Garcia, Maria Angeles
dc.contributor.authorYoung, Pablo
dc.contributor.authorRamirez, Juan Ignacio
dc.contributor.authorTitto-Omonte, Estela Edith
dc.contributor.authorGross-Artega, Rosmery
dc.contributor.authorCanales-Beltran, Magdy Teresa
dc.contributor.authorValdez, Pascual Ruben
dc.contributor.authorPugliese, Florencia
dc.contributor.authorCastagna, Rosa
dc.contributor.authorHuespe, Ivan A
dc.contributor.authorBoietti, Bruno
dc.contributor.authorPollan, Javier A
dc.contributor.authorFunke, Nico
dc.contributor.authorLeiding, Benjamin
dc.contributor.authorGomez-Varela, David
dc.contributor.funderMax Planck Society
dc.date.accessioned2023-05-03T14:27:53Z
dc.date.available2023-05-03T14:27:53Z
dc.date.issued2022-05-17
dc.description.abstractNew SARS-CoV-2 variants, breakthrough infections, waning immunity, and sub-optimal vaccination rates account for surges of hospitalizations and deaths. There is an urgent need for clinically valuable and generalizable triage tools assisting the allocation of hospital resources, particularly in resource-limited countries. We developed and validate CODOP, a machine learning-based tool for predicting the clinical outcome of hospitalized COVID-19 patients. CODOP was trained, tested and validated with six cohorts encompassing 29223 COVID-19 patients from more than 150 hospitals in Spain, the USA and Latin America during 2020-22. CODOP uses 12 clinical parameters commonly measured at hospital admission for reaching high discriminative ability up to 9 days before clinical resolution (AUROC: 0·90-0·96), it is well calibrated, and it enables an effective dynamic risk stratification during hospitalization. Furthermore, CODOP maintains its predictive ability independently of the virus variant and the vaccination status. To reckon with the fluctuating pressure levels in hospitals during the pandemic, we offer two online CODOP calculators, suited for undertriage or overtriage scenarios, validated with a cohort of patients from 42 hospitals in three Latin American countries (78-100% sensitivity and 89-97% specificity). The performance of CODOP in heterogeneous and geographically disperse patient cohorts and the easiness of use strongly suggest its clinical utility, particularly in resource-limited countries.
dc.description.versionSi
dc.identifier.citationKlén R, Purohit D, Gómez-Huelgas R, Casas-Rojo JM, Antón-Santos JM, Núñez-Cortés JM, et al. Development and evaluation of a machine learning-based in-hospital COVID-19 disease outcome predictor (CODOP): A multicontinental retrospective study. Elife. 2022 May 17;11:e75985
dc.identifier.doi10.7554/eLife.75985
dc.identifier.essn2050-084X
dc.identifier.pmcPMC9129872
dc.identifier.pmid35579324
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9129872/pdf
dc.identifier.unpaywallURLhttps://doi.org/10.7554/elife.75985
dc.identifier.urihttp://hdl.handle.net/10668/21673
dc.journal.titleeLife
dc.journal.titleabbreviationElife
dc.language.isoen
dc.organizationHospital Costa del Sol
dc.organizationHospital Universitario Regional de Málaga
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.page.number15
dc.provenanceRealizada la curación de contenido 24/03/2025
dc.publishereLife Sciences Publications
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.publisherversionhttps://doi.org/10.7554/eLife.75985
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCOVID-19
dc.subjectComputational biology
dc.subjectHuman
dc.subjectMachine-learning
dc.subjectMedicine
dc.subjectPrediction
dc.subjectSystems biology
dc.subjectTriage
dc.subject.decsVacunación
dc.subject.decsSensibilidad y Especificidad
dc.subject.decsInfección Irruptiva
dc.subject.decsVirus
dc.subject.decsPandemias
dc.subject.decsEstándares de Referencia
dc.subject.meshCOVID-19
dc.subject.meshHospitalization
dc.subject.meshHospitals
dc.subject.meshHumans
dc.subject.meshMachine Learning
dc.subject.meshRetrospective Studies
dc.subject.meshSARS-CoV-2
dc.titleDevelopment and evaluation of a machine learning-based in-hospital COVID-19 disease outcome predictor (CODOP): A multicontinental retrospective study.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC9129872.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format