Publication:
Self-Assembled Type I Collagen-Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells.

dc.contributor.authorRomero-Castillo, Ismael
dc.contributor.authorLópez-Ruiz, Elena
dc.contributor.authorFernández-Sánchez, Jorge Fernando
dc.contributor.authorMarchal, Juan Antonio
dc.contributor.authorGómez-Morales, Jaime
dc.date.accessioned2023-02-09T10:38:44Z
dc.date.available2023-02-09T10:38:44Z
dc.date.issued2020-12-28
dc.description.abstractThis work explores in depth the simultaneous self-assembly and mineralization of type I collagen by a base-acid neutralization technique to prepare biomimetic collagen-apatite fibrils with varying mineralization extent and doped with luminescent bactericidal Tb3+ ions. Two variants of the method are tested: base-acid titration, a solution of Ca(OH)2 is added dropwise to a stirred solution containing type I collagen dispersed in H3 PO4 ; and direct mixing, the Ca(OH)2 solution is added by fast dripping onto the acidic solution. Only the direct mixing variant yielded an effective control of calcium phosphate polymorphism. Luminescence spectroscopy reveals the long luminescence lifetime and high relative luminescence intensity of the Tb3+ -doped materials, while two-photon confocal fluorescence microscopy shows the characteristic green fluorescence light when using excitation wavelength of 458 nm, which is not harmful to bone tissue. Cytotoxicity/viability tests reveal that direct mixing samples show higher cell proliferation than titration samples. Additionally, osteogenic differentiation essays show that all mineralized fibrils promote the osteogenic differentiation, but the effect is more pronounced when using samples prepared by direct mixing, and more notably when using the Tb3+ -doped mineralized fibrils. Based on these findings it is concluded that the new nanocomposite is an ideal candidate for bone regenerative therapy.
dc.identifier.doi10.1002/mabi.202000319
dc.identifier.essn1616-5195
dc.identifier.pmid33369064
dc.identifier.unpaywallURLhttps://digital.csic.es/bitstream/10261/276410/1/Self_assembled.pdf
dc.identifier.urihttp://hdl.handle.net/10668/16857
dc.issue.number3
dc.journal.titleMacromolecular bioscience
dc.journal.titleabbreviationMacromol Biosci
dc.language.isoen
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.page.numbere2000319
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectapatite mineralization
dc.subjecthMSCs cell viability
dc.subjecthMSCs osteogenic differentiation
dc.subjectself-assembly
dc.subjectterbium
dc.subjecttype I-collagen
dc.subject.meshApatites
dc.subject.meshCalcification, Physiologic
dc.subject.meshCell Death
dc.subject.meshCell Differentiation
dc.subject.meshCell Survival
dc.subject.meshCollagen Type I
dc.subject.meshHumans
dc.subject.meshLuminescence
dc.subject.meshMesenchymal Stem Cells
dc.subject.meshOsteogenesis
dc.subject.meshSpectroscopy, Fourier Transform Infrared
dc.subject.meshTerbium
dc.subject.meshX-Ray Diffraction
dc.titleSelf-Assembled Type I Collagen-Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells.
dc.typeresearch article
dc.type.hasVersionSMUR
dc.volume.number21
dspace.entity.typePublication

Files