Publication:
Standardizing effect size from linear regression models with log-transformed variables for meta-analysis

dc.contributor.authorRodríguez-Barranco, Miguel
dc.contributor.authorTobías, Aurelio
dc.contributor.authorRedondo, Daniel
dc.contributor.authorMolina-Portillo, Elena
dc.contributor.authorSanchez-Perez, Maria-Jose
dc.contributor.authoraffiliation[Rodríguez-Barranco,M; Redondo,D; Molina-Portillo,E; Sánchez, MJ] Andalusian School of Public Health (EASP), Granada, Spain. [Rodríguez-Barranco,M; Redondo,D; Molina-Portillo,E; Sánchez, MJ] Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada/University of Granada, Granada, Spain. [Rodríguez-Barranco,M; Redondo,D; Molina-Portillo,E; Sánchez, MJ] CIBERESP, Madrid, Spain. [Tobías,A] Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
dc.date.accessioned2018-06-11T11:32:59Z
dc.date.available2018-06-11T11:32:59Z
dc.date.issued2017-03-17
dc.description.abstractBackground Meta-analysis is very useful to summarize the effect of a treatment or a risk factor for a given disease. Often studies report results based on log-transformed variables in order to achieve the principal assumptions of a linear regression model. If this is the case for some, but not all studies, the effects need to be homogenized. Methods We derived a set of formulae to transform absolute changes into relative ones, and vice versa, to allow including all results in a meta-analysis. We applied our procedure to all possible combinations of log-transformed independent or dependent variables. We also evaluated it in a simulation based on two variables either normally or asymmetrically distributed. Results In all the scenarios, and based on different change criteria, the effect size estimated by the derived set of formulae was equivalent to the real effect size. To avoid biased estimates of the effect, this procedure should be used with caution in the case of independent variables with asymmetric distributions that significantly differ from the normal distribution. We illustrate an application of this procedure by an application to a meta-analysis on the potential effects on neurodevelopment in children exposed to arsenic and manganese. Conclusions The procedure proposed has been shown to be valid and capable of expressing the effect size of a linear regression model based on different change criteria in the variables. Homogenizing the results from different studies beforehand allows them to be combined in a meta-analysis, independently of whether the transformations had been performed on the dependent and/or independent variables.es_ES
dc.description.versionYeses_ES
dc.identifier.citationRodríguez-Barranco M, Tobias A, Redondo D, Molina-Portillo E, Sánchez-Pérez MJ. Standardizing effect size from linear regression models with log-transformed variables for meta-analysis. BMC Med Res Methodol. 2017 Mar 17:17(1):44es_ES
dc.identifier.doi10.1186/s12874-017-0322-8es_ES
dc.identifier.essn1471-2288
dc.identifier.pmcPMC5356327
dc.identifier.pmid28302052es_ES
dc.identifier.urihttp://hdl.handle.net/10668/2888
dc.journal.titleBMC Medical Research Methodology
dc.language.isoen
dc.publisherBiomed Centrales_ES
dc.relation.publisherversionhttps://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-017-0322-8es_ES
dc.rights.accessRightsAcceso abiertoes_ES
dc.subjectMeta-analysises_ES
dc.subjectSystematic reviewes_ES
dc.subjectLog-transformationes_ES
dc.subjectLinear regressiones_ES
dc.subjectEffect sizees_ES
dc.subjectRegression coefficientses_ES
dc.subjectMetaanálisises_ES
dc.subjectRevisiónes_ES
dc.subjectModelos linealeses_ES
dc.subjectModelos estadísticoses_ES
dc.subject.meshMedical Subject Headings::Health Care::Environment and Public Health::Public Health::Epidemiologic Methods::Statistics as Topic::Regression Analysis::Linear Modelses_ES
dc.subject.meshMedical Subject Headings::Publication Type::Study Characteristics::Meta-Analysises_ES
dc.subject.meshMedical Subject Headings::Publication Type::Publication Formats::Reviewes_ES
dc.subject.meshMedical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Elements::Arsenices_ES
dc.subject.meshMedical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Elements::Metals, Heavy::Manganesees_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Computer Simulationes_ES
dc.titleStandardizing effect size from linear regression models with log-transformed variables for meta-analysises_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodriguezBarranco_StandarizingEffect.pdf
Size:
487.22 KB
Format:
Adobe Portable Document Format
Description:
Artículo