Publication:
Semi-supervised learning for ordinal Kernel Discriminant Analysis.

dc.contributor.authorPérez-Ortiz, M
dc.contributor.authorGutiérrez, P A
dc.contributor.authorCarbonero-Ruz, M
dc.contributor.authorHervás-Martínez, C
dc.date.accessioned2023-01-25T08:36:44Z
dc.date.available2023-01-25T08:36:44Z
dc.date.issued2016-08-25
dc.description.abstractOrdinal classification considers those classification problems where the labels of the variable to predict follow a given order. Naturally, labelled data is scarce or difficult to obtain in this type of problems because, in many cases, ordinal labels are given by a user or expert (e.g. in recommendation systems). Firstly, this paper develops a new strategy for ordinal classification where both labelled and unlabelled data are used in the model construction step (a scheme which is referred to as semi-supervised learning). More specifically, the ordinal version of kernel discriminant learning is extended for this setting considering the neighbourhood information of unlabelled data, which is proposed to be computed in the feature space induced by the kernel function. Secondly, a new method for semi-supervised kernel learning is devised in the context of ordinal classification, which is combined with our developed classification strategy to optimise the kernel parameters. The experiments conducted compare 6 different approaches for semi-supervised learning in the context of ordinal classification in a battery of 30 datasets, showing (1) the good synergy of the ordinal version of discriminant analysis and the use of unlabelled data and (2) the advantage of computing distances in the feature space induced by the kernel function.
dc.identifier.doi10.1016/j.neunet.2016.08.004
dc.identifier.essn1879-2782
dc.identifier.pmid27639724
dc.identifier.unpaywallURLhttp://helvia.uco.es/xmlui/bitstream/10396/15782/1/elsarticle-template.pdf
dc.identifier.urihttp://hdl.handle.net/10668/10454
dc.journal.titleNeural networks : the official journal of the International Neural Network Society
dc.journal.titleabbreviationNeural Netw
dc.language.isoen
dc.organizationIMIBIC
dc.page.number57-66
dc.pubmedtypeJournal Article
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectClassification
dc.subjectDiscriminant analysis
dc.subjectKernel learning
dc.subjectOrdinal regression
dc.subjectSemi-supervised learning
dc.subject.meshAlgorithms
dc.subject.meshDiscriminant Analysis
dc.subject.meshSpatial Analysis
dc.subject.meshSupervised Machine Learning
dc.titleSemi-supervised learning for ordinal Kernel Discriminant Analysis.
dc.typeresearch article
dc.type.hasVersionSMUR
dc.volume.number84
dspace.entity.typePublication

Files