Publication:
Synthesis and Characterization of Elongated-Shaped Silver Nanoparticles as a Biocompatible Anisotropic SERS Probe for Intracellular Imaging: Theoretical Modeling and Experimental Verification.

dc.contributor.authorCaro, Carlos
dc.contributor.authorQuaresma, Pedro
dc.contributor.authorPereira, Eulália
dc.contributor.authorFranco, Jaime
dc.contributor.authorPernia Leal, Manuel
dc.contributor.authorGarcía-Martín, Maria Luisa
dc.contributor.authorRoyo, Jose Luis
dc.contributor.authorOliva-Montero, Jose Maria
dc.contributor.authorMerkling, Patrick Jacques
dc.contributor.authorZaderenko, Ana Paula
dc.contributor.authorPozo, David
dc.contributor.authorFranco, Ricardo
dc.date.accessioned2023-01-25T10:31:35Z
dc.date.available2023-01-25T10:31:35Z
dc.date.issued2019-02-13
dc.description.abstractProgress in the field of biocompatible SERS nanoparticles has promising prospects for biomedical applications. In this work, we have developed a biocompatible Raman probe by combining anisotropic silver nanoparticles with the dye rhodamine 6G followed by subsequent coating with bovine serum albumin. This nanosystem presents strong SERS capabilities in the near infrared (NIR) with a very high (2.7 × 10⁷) analytical enhancement factor. Theoretical calculations reveal the effects of the electromagnetic and chemical mechanisms in the observed SERS effect for this nanosystem. Finite element method (FEM) calculations showed a considerable near field enhancement in NIR. Using density functional quantum chemical calculations, the chemical enhancement mechanism of rhodamine 6G by interaction with the nanoparticles was probed, allowing us to calculate spectra that closely reproduce the experimental results. The nanosystem was tested in cell culture experiments, showing cell internalization and also proving to be completely biocompatible, as no cell death was observed. Using a NIR laser, SERS signals could be detected even from inside cells, proving the applicability of this nanosystem as a biocompatible SERS probe.
dc.identifier.doi10.3390/nano9020256
dc.identifier.issn2079-4991
dc.identifier.pmcPMC6409692
dc.identifier.pmid30781838
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409692/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2079-4991/9/2/256/pdf?version=1550059370
dc.identifier.urihttp://hdl.handle.net/10668/13590
dc.issue.number2
dc.journal.titleNanomaterials (Basel, Switzerland)
dc.journal.titleabbreviationNanomaterials (Basel)
dc.language.isoen
dc.organizationCentro Andaluz de Nanomedicina y Biotecnología-BIONAND
dc.organizationCentro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSERS
dc.subjectcancer
dc.subjectcell labeling
dc.subjectdensity functional theory calculations
dc.subjectfinite element method
dc.subjectsurface enhanced Raman scattering
dc.titleSynthesis and Characterization of Elongated-Shaped Silver Nanoparticles as a Biocompatible Anisotropic SERS Probe for Intracellular Imaging: Theoretical Modeling and Experimental Verification.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number9
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC6409692.pdf
Size:
2.31 MB
Format:
Adobe Portable Document Format