Publication:
Automated identification of reference genes based on RNA-seq data.

dc.contributor.authorCarmona, Rosario
dc.contributor.authorArroyo, Macarena
dc.contributor.authorJimenez-Quesada, Maria Jose
dc.contributor.authorSeoane, Pedro
dc.contributor.authorZafra, Adoracion
dc.contributor.authorLarrosa, Rafael
dc.contributor.authorAlche, Juan de Dios
dc.contributor.authorClaros, M Gonzalo
dc.contributor.funderEuropean Union through the ERDF 2014–2020 “Programa Operativo de Crecimiento Inteligente”
dc.contributor.funderSpanish INIA
dc.contributor.funderSpanish MINECO
dc.date.accessioned2023-01-25T09:51:08Z
dc.date.available2023-01-25T09:51:08Z
dc.date.issued2017-08-18
dc.description.abstractGene expression analyses demand appropriate reference genes (RGs) for normalization, in order to obtain reliable assessments. Ideally, RG expression levels should remain constant in all cells, tissues or experimental conditions under study. Housekeeping genes traditionally fulfilled this requirement, but they have been reported to be less invariant than expected; therefore, RGs should be tested and validated for every particular situation. Microarray data have been used to propose new RGs, but only a limited set of model species and conditions are available; on the contrary, RNA-seq experiments are more and more frequent and constitute a new source of candidate RGs. An automated workflow based on mapped NGS reads has been constructed to obtain highly and invariantly expressed RGs based on a normalized expression in reads per mapped million and the coefficient of variation. This workflow has been tested with Roche/454 reads from reproductive tissues of olive tree (Olea europaea L.), as well as with Illumina paired-end reads from two different accessions of Arabidopsis thaliana and three different human cancers (prostate, small-cell cancer lung and lung adenocarcinoma). Candidate RGs have been proposed for each species and many of them have been previously reported as RGs in literature. Experimental validation of significant RGs in olive tree is provided to support the algorithm. Regardless sequencing technology, number of replicates, and library sizes, when RNA-seq experiments are designed and performed, the same datasets can be analyzed with our workflow to extract suitable RGs for subsequent PCR validation. Moreover, different subset of experimental conditions can provide different suitable RGs.
dc.description.sponsorshipThis research was supported by co‑funding from the European Union through the ERDF 2014–2020 “Programa Operativo de Crecimiento Inteligente” to the projects RTA2013‑00068‑C03 and RTA2013‑00023‑C02 of the Spanish INIA; BFU2011-22779 and RECUPERA2020‑3.1.4 from the Spanish MINECO, P11‑CVI‑7487 from the regional PAI, and NEUMOSUR grant 12/2015 entitled “Expresión de retrotransposones en pacientes con adenocarcinoma intervenido. Comparación entre tejido sano y tumoral.” Publication costs were funded by the mentioned grants.
dc.description.versionSi
dc.identifier.citationCarmona R, Arroyo M, Jiménez-Quesada MJ, Seoane P, Zafra A, Larrosa R, et al. Automated identification of reference genes based on RNA-seq data. Biomed Eng Online. 2017 Aug 18;16(Suppl 1):65
dc.identifier.doi10.1186/s12938-017-0356-5
dc.identifier.essn1475-925X
dc.identifier.pmcPMC5568602
dc.identifier.pmid28830520
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568602/pdf
dc.identifier.unpaywallURLhttps://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/s12938-017-0356-5
dc.identifier.urihttp://hdl.handle.net/10668/11527
dc.issue.numberSuppl 1
dc.journal.titleBiomedical engineering online
dc.journal.titleabbreviationBiomed Eng Online
dc.language.isoen
dc.organizationHospital Universitario Regional de Málaga
dc.page.number23
dc.provenanceRealizada la curación de contenido 12/03/2025
dc.publisherBioMed Central
dc.pubmedtypeJournal Article
dc.relation.projectIDRTA2013‑00068‑C03
dc.relation.projectIDRTA2013‑00023‑C02
dc.relation.projectIDBFU2011-22779
dc.relation.projectIDRECUPERA2020‑3.1.4
dc.relation.projectIDP11‑CVI‑7487
dc.relation.publisherversionhttps://biomedical-engineering-online.biomedcentral.com/articles/10.1186/s12938-017-0356-5
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCancer
dc.subjectNormalization
dc.subjectOlive (Olea europaea L.)
dc.subjectQuantitative PCR
dc.subjectReal-time PCR
dc.subjectReference genes
dc.subject.decsFlujo de trabajo
dc.subject.decsTejidos
dc.subject.decsRNA-Seq
dc.subject.decsPulmón
dc.subject.decsExpresión génica
dc.subject.decsReacción en cadena de la polimerasa
dc.subject.meshArabidopsis
dc.subject.meshAutomation
dc.subject.meshCell Line, Tumor
dc.subject.meshGene Expression Profiling
dc.subject.meshHumans
dc.subject.meshOlea
dc.subject.meshReference Standards
dc.subject.meshSequence Analysis, RNA
dc.titleAutomated identification of reference genes based on RNA-seq data.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number16
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
PMC5568602.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Carmona_Automated_MaterialSuplementario.zip
Size:
119.47 KB
Format: