Publication: Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles
dc.contributor.author | Vurro, Federica | |
dc.contributor.author | Jabalera, Ylenia | |
dc.contributor.author | Mannucci, Silvia | |
dc.contributor.author | Glorani, Giulia | |
dc.contributor.author | Sola-Leyva, Alberto | |
dc.contributor.author | Gerosa, Marco | |
dc.contributor.author | Romeo, Alessandro | |
dc.contributor.author | Romanelli, Maria Grazia | |
dc.contributor.author | Malatesta, Manuela | |
dc.contributor.author | Calderan, Laura | |
dc.contributor.author | Iglesias, Guillermo R. | |
dc.contributor.author | Carrasco-Jiménez, María P. | |
dc.contributor.author | Jimenez-Lopez, Concepcion | |
dc.contributor.author | Perduca, Massimiliano | |
dc.contributor.authoraffiliation | [Vurro,F; Mannucci,S; Gerosa,M; Romanelli,MG; Malatesta,M; Calderan,L] Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy. [Jabalera,Y; Jimenez-Lopez,C] Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain. [Glorani,G; Perduca,M] Department of Biotechnology, University of Verona, Strada Le Grazie, Verona, Italy. [Sola-Leyva,A; Carrasco-Jiménez,MP] Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain. [Sola-Leyva,A] Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain. [Romeo,A] Department of Computer Science, University of Verona, Strada Le Grazie, Verona, Italy. [Iglesias,GR] Department of Applied Physic, Faculty of Sciences, University of Granada, Granada, Spain; | |
dc.contributor.funder | This research was funded by the FUR (Fondo Unico della Ricerca—University of Verona) of M. Perduca. C.J.-L. acknowledges funding from projects CGL2016-76723 from the Ministerio de Economía y Competitividad from Spain and Fondo Europeo de Desarrollo Regional (FEDER) and Programa Operativo FEDER 2014–2020 (A-BIO-376-UGR18) Junta de Andalucia. M.P.C.-J. acknowledges funding from projects PID2019-109294RB-100 from the Ministerio de Ciencia e Innovación from Spain. | |
dc.date.accessioned | 2022-12-07T08:19:46Z | |
dc.date.available | 2022-12-07T08:19:46Z | |
dc.date.issued | 2021-03-18 | |
dc.description.abstract | Magnetococcus marinus magnetosome-associated protein MamC, expressed as recombinant, has been proven to mediate the formation of novel biomimetic magnetic nanoparticles (BMNPs) that are successful drug nanocarriers for targeted chemotherapy and hyperthermia agents. These BMNPs present several advantages over inorganic magnetic nanoparticles, such as larger sizes that allow the former to have larger magnetic moment per particle, and an isoelectric point at acidic pH values, which allows both the stable functionalization of BMNPs at physiological pH value and the molecule release at acidic (tumor) environments, simply based on electrostatic interactions. However, difficulties for BMNPs cell internalization still hold back the efficiency of these nanoparticles as drug nanocarriers and hyperthermia agents. In the present study we explore the enhanced BMNPs internalization following upon their encapsulation by poly (lactic-co-glycolic) acid (PLGA), a Food and Drug Administration (FDA) approved molecule. Internalization is further optimized by the functionalization of the nanoformulation with the cell-penetrating TAT peptide (TATp). Our results evidence that cells treated with the nanoformulation [TAT-PLGA(BMNPs)] show up to 80% more iron internalized (after 72 h) compared to that of cells treated with BMNPs (40%), without any significant decrease in cell viability. This nanoformulation showing optimal internalization is further characterized. In particular, the present manuscript demonstrates that neither its magnetic properties nor its performance as a hyperthermia agent are significantly altered due to the encapsulation. In vitro experiments demonstrate that, following upon the application of an alternating magnetic field on U87MG cells treated with BMNPs and TAT-PLGA(BMNPs), the cytotoxic effect of BMNPs was not affected by the TAT-PLGA enveloping. Based on that, difficulties shown in previous studies related to poor cell uptake of BMNPs can be overcome by the novel nanoassembly described here. | es_ES |
dc.description.version | Yes | es_ES |
dc.identifier.citation | Vurro F, Jabalera Y, Mannucci S, Glorani G, Sola-Leyva A, Gerosa M, et al. Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles. Nanomaterials. 2021 Mar 18;11(3):766 | es_ES |
dc.identifier.doi | 10.3390/nano11030766 | es_ES |
dc.identifier.essn | 2079-4991 | |
dc.identifier.pmc | PMC8002967 | |
dc.identifier.pmid | 33803544 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10668/4463 | |
dc.journal.title | Nanomaterials | |
dc.language.iso | en | |
dc.page.number | 16 p. | |
dc.publisher | MDPI | es_ES |
dc.relation.publisherversion | https://www.mdpi.com/2079-4991/11/3/766 | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.accessRights | Acceso abierto | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Biomimetic magnetic nanoparticles | es_ES |
dc.subject | Poly (lactic-co-glycolic) acid | es_ES |
dc.subject | PLGA | es_ES |
dc.subject | Penetrating TAT peptide | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Magnetic hyperthermia | es_ES |
dc.subject | Cellular uptake | es_ES |
dc.subject | Magnetic fields | es_ES |
dc.subject | Nanopartículas magnéticas de óxido de hierro | es_ES |
dc.subject | Copolímero de ácido poliláctico-ácido poliglicólico | es_ES |
dc.subject | Nanopartículas | es_ES |
dc.subject | Hipertermia | es_ES |
dc.subject | Campos magnéticos | es_ES |
dc.subject.mesh | Medical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biotechnology::Biomimetics | es_ES |
dc.subject.mesh | Medical Subject Headings::Phenomena and Processes::Cell Physiological Phenomena::Cell Physiological Processes::Cell Survival | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Electrochemical Techniques::Electrophoresis::Isoelectric Focusing::Isoelectric Point | es_ES |
dc.subject.mesh | Medical Subject Headings::Chemicals and Drugs::Inorganic Chemicals::Iron Compounds::Ferric Compounds::Ferrosoferric Oxide::Magnetite Nanoparticles | es_ES |
dc.subject.mesh | Medical Subject Headings::Anatomy::Cells::Cellular Structures::Intracellular Space::Cytoplasm::Cytoplasmic Structures::Organelles::Magnetosomes | es_ES |
dc.subject.mesh | Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Magnetic Phenomena::Electromagnetic Phenomena::Electricity::Static Electricity | es_ES |
dc.subject.mesh | Medical Subject Headings::Anthropology, Education, Sociology and Social Phenomena::Social Sciences::Government::Federal Government::United States Government Agencies::United States Dept. of Health and Human Services::United States Public Health Service::United States Food and Drug Administration | es_ES |
dc.subject.mesh | Medical Subject Headings::Phenomena and Processes::Physical Phenomena::Magnetic Phenomena::Magnetic Fields | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Therapeutics::Hyperthermia, Induced | es_ES |
dc.subject.mesh | Medical Subject Headings::Chemicals and Drugs::Amino Acids, Peptides, and Proteins::Peptides | es_ES |
dc.subject.mesh | Medical Subject Headings::Diseases::Neoplasms | es_ES |
dc.title | Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles | es_ES |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication |