Publication:
Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning.

dc.contributor.authorMayoral, Isabel
dc.contributor.authorBevilacqua, Elisa
dc.contributor.authorGómez, Gorka
dc.contributor.authorHmadcha, Abdelkrim
dc.contributor.authorGonzález-Loscertales, Ignacio
dc.contributor.authorReina, Esther
dc.contributor.authorSotelo, Julio
dc.contributor.authorDomínguez, Antonia
dc.contributor.authorPérez-Alcántara, Pedro
dc.contributor.authorSmani, Younes
dc.contributor.authorGonzález-Puertas, Patricia
dc.contributor.authorMendez, Ana
dc.contributor.authorUribe, Sergio
dc.contributor.authorSmani, Tarik
dc.contributor.authorOrdoñez, Antonio
dc.contributor.authorValverde, Israel
dc.date.accessioned2023-05-03T15:10:37Z
dc.date.available2023-05-03T15:10:37Z
dc.date.issued2022-04-14
dc.description.abstractThree-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 ​± ​15 ​mmHg) and a porosity gradient ranging from 80 to 10 ​μm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.
dc.identifier.doi10.1016/j.mtbio.2022.100252
dc.identifier.essn2590-0064
dc.identifier.pmcPMC9059085
dc.identifier.pmid35509864
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059085/pdf
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.mtbio.2022.100252
dc.identifier.urihttp://hdl.handle.net/10668/22400
dc.journal.titleMaterials today. Bio
dc.journal.titleabbreviationMater Today Bio
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.page.number100252
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject3D printing
dc.subjectElectrospinning
dc.subjectEndothelin Receptor A, ETA
dc.subjectEndothelin Receptor B, ETB
dc.subjectMesenchymal stem cells
dc.subjectReverse Transcription, Rt
dc.subjectThree-dimensional, 3D
dc.subjectTissue engineering
dc.subjectVascular graft
dc.subjectanti-alpha-smooth muscle actin, α-SMA
dc.subjectanti-cluster of differentiation 31, CD31
dc.subjectanti-fibroblast specific protein 1, FSP1
dc.subjectanti-smooth muscle protein 22, SM-22
dc.subjectbone morphogenetic protein, BMP4
dc.subjectcomputation fluid dynamic, CFD
dc.subjectcomputed tomography, CT
dc.subjectderived VSMC, dVSMC
dc.subjectendothelin-1, ET-1
dc.subjectextracellular matrix, ECM
dc.subjectfused deposition modelling, FDM
dc.subjectmesenchymal stem cells, MSC
dc.subjectplatelet-derived growth factor composed by two beta chains, PDGF-BB
dc.subjectroom temperature, RT
dc.subjecttissue engineering vascular grafts, TEVG
dc.subjecttransforming growth factor beta 1, TGFβ-1
dc.subjectvascular smooth muscle cells, VSMC
dc.subjectwall shear stress, WSS
dc.subjectwestern blotting, WB
dc.titleTissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number14
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC9059085.pdf
Size:
3.24 MB
Format:
Adobe Portable Document Format