Publication:
Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg)

dc.contributor.authorNyssen, Olga. P.
dc.contributor.authorPratesi, Pietro
dc.contributor.authorSpinola, Miguel. A.
dc.contributor.authorJonaitis, Laimas
dc.contributor.authorPerez-Aisa, Angeles
dc.contributor.authorVaira, Dino
dc.contributor.authorSaracino, Ilaria Maria
dc.contributor.authorPavoni, Matteo
dc.contributor.authorFiorini, Giulia
dc.contributor.authorTepes, Bojan
dc.contributor.authorBordin, Dmitry. S.
dc.contributor.authorVoynovan, Irina
dc.contributor.authorLanas, Angel
dc.contributor.authorMartinez-Dominguez, Samuel. J.
dc.contributor.authorAlfaro, Enrique
dc.contributor.authorBujanda, Luis
dc.contributor.authorPabon-Carrasco, Manuel
dc.contributor.authorHernández, Luis
dc.contributor.authorGasbarrini, Antonio
dc.contributor.authorKupcinskas, Juozas
dc.contributor.authorLerang, Frode
dc.contributor.authorSmith, Sinead. M.
dc.contributor.authorGridnyev, Oleksiy
dc.contributor.authorLeja, Marcis
dc.contributor.authorRokkas, Theodore
dc.contributor.authorMarcos-Pinto, Ricardo
dc.contributor.authorMestrovic, Antonio
dc.contributor.authorMarlicz, Wojciech
dc.contributor.authorMilivojevic, Vladimir
dc.contributor.authorSimsek, Halis
dc.contributor.authorKunovsky, Lumir
dc.contributor.authorPapp, Veronika
dc.contributor.authorPhull, Perminder. S.
dc.contributor.authorVenerito, Marino
dc.contributor.authorBoyanova, Lyudmila
dc.contributor.authorBoltin, Doron
dc.contributor.authorNiv, Yaron
dc.contributor.authorMatysiak-Budnik, Tamara
dc.contributor.authorDoulberis, Michael
dc.contributor.authorDobru, Daniela
dc.contributor.authorLamy, Vincent
dc.contributor.authorCapelle, Lisette. G.
dc.contributor.authorTrpchevska, Emilijia Nikolovska
dc.contributor.authorMoreira, Leticia
dc.contributor.authorCano-Catalia, Anna
dc.contributor.authorParra, Pablo
dc.contributor.authorMegraud, Francis
dc.contributor.authorO'Morain, Colm
dc.contributor.authorOrtega, Guillermo. J.
dc.contributor.authorGisbert, Javier. P.
dc.contributor.authorHp EuReg Investigators
dc.contributor.authoraffiliation[Perez-Asisa,A] Hospital Universitario Costa del Sol, Marbella, Spain.
dc.contributor.authoraffiliation[Pabon-Carrasco,M] Department of Gastroenterology, Hospital de Valme, Sevilla, Spain.
dc.contributor.funderEuropean Helicobacter and Microbiota Study Group (EHMSG)
dc.contributor.funderSpanish Association of Gastroenterology (AEG)
dc.contributor.funderCentro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
dc.contributor.groupHp-EuReg Investigators
dc.date.accessioned2025-01-31T12:39:19Z
dc.date.available2025-01-31T12:39:19Z
dc.date.issued2023-09-10
dc.description.abstractThe segmentation of patients into homogeneous groups could help to improve eradication therapy effectiveness. Our aim was to determine the most important treatment strategies used in Europe, to evaluate first-line treatment effectiveness according to year and country. Data collection: All first-line empirical treatments registered at AEGREDCap in the European Registry on Helicobacter pylori management (Hp-EuReg) from June 2013 to November 2022. A Boruta method determined the "most important" variables related to treatment effectiveness. Data clustering was performed through multi-correspondence analysis of the resulting six most important variables for every year in the 2013-2022 period. Based on 35,852 patients, the average overall treatment effectiveness increased from 87% in 2013 to 93% in 2022. The lowest effectiveness (80%) was obtained in 2016 in cluster #3 encompassing Slovenia, Lithuania, Latvia, and Russia, treated with 7-day triple therapy with amoxicillin-clarithromycin (92% of cases). The highest effectiveness (95%) was achieved in 2022, mostly in Spain (81%), with the bismuth-quadruple therapy, including the single-capsule (64%) and the concomitant treatment with clarithromycin-amoxicillin-metronidazole/tinidazole (34%) with 10 (69%) and 14 (32%) days. Cluster analysis allowed for the identification of patients in homogeneous treatment groups assessing the effectiveness of different first-line treatments depending on therapy scheme, adherence, country, and prescription year.
dc.description.sponsorshipThis project was promoted and funded by the European Helicobacter and Microbiota Study Group (EHMSG), the Spanish Association of Gastroenterology (AEG), and the Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd). The Hp- EuReg was co-funded by the European Union programme HORIZON (grant agreement number 101095359) and supported by the UK Research and Innovation (grant agreement number 10058099). The Hp-EuReg was co-funded by the European Union programme EU4Health (grant agreement number 101101252). This study was funded by Richen; however, clinical data were not accessible, and the company was not involved in any stage of the Hp-EuReg study (design, data collection, statistical analysis, or manuscript writing). We want to thank Richen for their support.
dc.description.versionYes
dc.identifier.citationNyssen OP, Pratesi P, Spínola MA, Jonaitis L, Pérez-Aísa Á, Vaira D, et al. Analysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013-2022: Data from the European Registry on H. pylori Management (Hp-EuReg). Antibiotics (Basel). 2023 Sep 10;12(9):1427.
dc.identifier.doi10.3390/antibiotics12091427
dc.identifier.issn2079-6382
dc.identifier.pmid37760723
dc.identifier.urihttps://hdl.handle.net/10668/28463
dc.identifier.wosIDWOS:001074506900001
dc.issue.number9
dc.journal.titleAntibiotics
dc.language.isoen
dc.page.number18
dc.publisherMDPI
dc.relation.projectID10058099
dc.relation.projectID101095359
dc.relation.publisherversionhttps://www.mdpi.com/2079-6382/12/9/1427
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHelicobacter pylori
dc.subjectclustering
dc.subjectphenotyping
dc.subjectmachine learning
dc.subjecttreatment
dc.subjecteradication
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subject.decsHelicobacter pylori
dc.subject.decsTerapia de Erradicación
dc.subject.decsAnálisis de Clúster
dc.subject.decsResistencia a los Antibióticos
dc.subject.decsRegistros de Salud
dc.subject.meshHelicobacter pylori
dc.subject.meshEradication Therapy
dc.subject.meshCluster Analysis
dc.subject.meshAntibiotic Resistance Electronic
dc.subject.meshHealth Records
dc.titleAnalysis of Clinical Phenotypes through Machine Learning of First-Line H. pylori Treatment in Europe during the Period 2013–2022: Data from the European Registry on H. pylori Management (Hp-EuReg)
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number12
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Nyssen_Analysis.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format