Publication:
Deep Learning to Analyze RNA-Seq Gene Expression Data

dc.conference.dateJUN 14-16, 2017
dc.conference.title14th International Work-Conference on Artificial Neural Networks (IWANN)
dc.contributor.authorUrda, D.
dc.contributor.authorMontes-Torres, J.
dc.contributor.authorMoreno, F.
dc.contributor.authorFranco, L.
dc.contributor.authorJerez, J. M.
dc.contributor.authorRojas, I
dc.contributor.authorJoya, G
dc.contributor.authorCatala, A
dc.contributor.authoraffiliation[Urda, D.] Univ Malaga, Andalucia Tech, ETSI Informat Espana, Malaga, Spain
dc.contributor.authoraffiliation[Montes-Torres, J.] Univ Malaga, Dept Lenguajes & Ciencias Comp, ETSI Informat Espana, Malaga, Spain
dc.contributor.authoraffiliation[Moreno, F.] Univ Malaga, Dept Lenguajes & Ciencias Comp, ETSI Informat Espana, Malaga, Spain
dc.contributor.authoraffiliation[Franco, L.] Univ Malaga, Dept Lenguajes & Ciencias Comp, ETSI Informat Espana, Malaga, Spain
dc.contributor.authoraffiliation[Jerez, J. M.] Univ Malaga, Dept Lenguajes & Ciencias Comp, ETSI Informat Espana, Malaga, Spain
dc.contributor.authoraffiliation[Urda, D.] Inst Invest Biomed Malaga IBIMA, Inteligencia Computac Biomed Espana, Malaga, Spain
dc.contributor.authoraffiliation[Montes-Torres, J.] Inst Invest Biomed Malaga IBIMA, Inteligencia Computac Biomed Espana, Malaga, Spain
dc.contributor.authoraffiliation[Franco, L.] Inst Invest Biomed Malaga IBIMA, Inteligencia Computac Biomed Espana, Malaga, Spain
dc.contributor.authoraffiliation[Jerez, J. M.] Inst Invest Biomed Malaga IBIMA, Inteligencia Computac Biomed Espana, Malaga, Spain
dc.contributor.funderMICINN-SPAIN which include FEDER funds
dc.contributor.funderICE Andalucia TECH (Spain)
dc.date.accessioned2023-02-12T02:20:17Z
dc.date.available2023-02-12T02:20:17Z
dc.date.issued2017-01-01
dc.description.abstractDeep learning models are currently being applied in several areas with great success. However, their application for the analysis of high-throughput sequencing data remains a challenge for the research community due to the fact that this family of models are known to work very well in big datasets with lots of samples available, just the opposite scenario typically found in biomedical areas. In this work, a first approximation on the use of deep learning for the analysis of RNA-Seq gene expression profiles data is provided. Three public cancer-related databases are analyzed using a regularized linear model (standard LASSO) as baseline model, and two deep learning models that differ on the feature selection technique used prior to the application of a deep neural net model. The results indicate that a straightforward application of deep nets implementations available in public scientific tools and under the conditions described within this work is not enough to outperform simpler models like LASSO. Therefore, smarter and more complex ways that incorporate prior biological knowledge into the estimation procedure of deep learning models may be necessary in order to obtain better results in terms of predictive performance.
dc.identifier.doi10.1007/978-3-319-59147-6_5
dc.identifier.essn1611-3349
dc.identifier.isbn978-3-319-59146-9
dc.identifier.issn0302-9743
dc.identifier.unpaywallURLhttps://riuma.uma.es/xmlui/bitstream/10630/13942/1/103060005.pdf
dc.identifier.urihttp://hdl.handle.net/10668/18619
dc.identifier.wosID443108700005
dc.journal.titleAdvances in computational intelligence, iwann 2017, pt ii
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.page.number50-59
dc.publisherSpringer international publishing ag
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rights.accessRightsopen access
dc.subjectDeep learning
dc.subjectRNA-Seq
dc.subjectPersonalized medicine
dc.subjectMachine Learning
dc.subjectBiomarkers discovery
dc.titleDeep Learning to Analyze RNA-Seq Gene Expression Data
dc.typeconference paper
dc.type.hasVersionSMUR
dc.volume.number10306
dc.wostypeProceedings Paper
dspace.entity.typePublication

Files