Publication:
A quantitative biophysical principle to explain the 3D cellular connectivity in curved epithelia.

dc.contributor.authorGomez-Galvez, Pedro
dc.contributor.authorVicente-Munuera, Pablo
dc.contributor.authorAnbari, Samira
dc.contributor.authorTagua, Antonio
dc.contributor.authorGordillo-Vazquez, Carmen
dc.contributor.authorAndres-San Roman, Jesus A
dc.contributor.authorFranco-Barranco, Daniel
dc.contributor.authorPalacios, Ana M
dc.contributor.authorVelasco, Antonio
dc.contributor.authorCapitan-Agudo, Carlos
dc.contributor.authorGrima, Clara
dc.contributor.authorAnnese, Valentina
dc.contributor.authorArganda-Carreras, Ignacio
dc.contributor.authorRobles, Rafael
dc.contributor.authorMarquez, Alberto
dc.contributor.authorBuceta, Javier
dc.contributor.authorEscudero, Luis M
dc.date.accessioned2023-05-03T14:49:55Z
dc.date.available2023-05-03T14:49:55Z
dc.date.issued2022-07-13
dc.description.abstractEpithelial cell organization and the mechanical stability of tissues are closely related. In this context, it has been recently shown that packing optimization in bended or folded epithelia is achieved by an energy minimization mechanism that leads to a complex cellular shape: the "scutoid". Here, we focus on the relationship between this shape and the connectivity between cells. We use a combination of computational, experimental, and biophysical approaches to examine how energy drivers affect the three-dimensional (3D) packing of tubular epithelia. We propose an energy-based stochastic model that explains the 3D cellular connectivity. Then, we challenge it by experimentally reducing the cell adhesion. As a result, we observed an increment in the appearance of scutoids that correlated with a decrease in the energy barrier necessary to connect with new cells. We conclude that tubular epithelia satisfy a quantitative biophysical principle that links tissue geometry and energetics with the average cellular connectivity.
dc.description.versionSi
dc.identifier.citationGómez-Gálvez P, Vicente-Munuera P, Anbari S, Tagua A, Gordillo-Vázquez C, Andrés-San Román JA, et al. A quantitative biophysical principle to explain the 3D cellular connectivity in curved epithelia. Cell Syst. 2022 Aug 17;13(8):631-643.e8.
dc.identifier.doi10.1016/j.cels.2022.06.003
dc.identifier.essn2405-4720
dc.identifier.pmid35835108
dc.identifier.unpaywallURLhttps://www.biorxiv.org/content/biorxiv/early/2020/06/21/2020.02.19.955567.full.pdf
dc.identifier.urihttp://hdl.handle.net/10668/22079
dc.issue.number8
dc.journal.titleCell systems
dc.journal.titleabbreviationCell Syst
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.page.number631-643.e8
dc.provenanceRealizada la curación de contenido 07/03/2025
dc.publisherCell Press
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.publisherversionhttps://linkinghub.elsevier.com/retrieve/pii/S2405-4712(22)00273-3
dc.rights.accessRights Restricted Access
dc.subjectbioimage analysis
dc.subjectcomputational geometry
dc.subjectdevelopmental systems biology
dc.subjectmathematical/biophysical modeling
dc.subjecttissue/cellular biophysics
dc.subject.decsTejidos
dc.subject.decsCélulas
dc.subject.decsPresas
dc.subject.decsAfecto
dc.subject.decsCélulas epiteliales
dc.subject.decsOrganizaciones
dc.subject.decsOptimización de procesos
dc.subject.decsAdhesión celular
dc.subject.meshBiophysics
dc.subject.meshCell Shape
dc.subject.meshEpithelial Cells
dc.subject.meshEpithelium
dc.subject.meshModels, Biological
dc.titleA quantitative biophysical principle to explain the 3D cellular connectivity in curved epithelia.
dc.typeresearch article
dc.type.hasVersionSMUR
dc.volume.number13
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RISalud_Accesorestringido.pdf
Size:
93.39 KB
Format:
Adobe Portable Document Format