Publication:
Human THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability.

dc.contributor.authorSalas-Armenteros, Irene
dc.contributor.authorPérez-Calero, Carmen
dc.contributor.authorBayona-Feliu, Aleix
dc.contributor.authorTumini, Emanuela
dc.contributor.authorLuna, Rosa
dc.contributor.authorAguilera, Andrés
dc.date.accessioned2023-01-25T10:01:08Z
dc.date.available2023-01-25T10:01:08Z
dc.date.issued2017-10-26
dc.description.abstractR-loops, formed by co-transcriptional DNA-RNA hybrids and a displaced DNA single strand (ssDNA), fulfill certain positive regulatory roles but are also a source of genomic instability. One key cellular mechanism to prevent R-loop accumulation centers on the conserved THO/TREX complex, an RNA-binding factor involved in transcription elongation and RNA export that contributes to messenger ribonucleoprotein (mRNP) assembly, but whose precise function is still unclear. To understand how THO restrains harmful R-loops, we searched for new THO-interacting factors. We found that human THO interacts with the Sin3A histone deacetylase complex to suppress co-transcriptional R-loops, DNA damage, and replication impairment. Functional analyses show that histone hypo-acetylation prevents accumulation of harmful R-loops and RNA-mediated genomic instability. Diminished histone deacetylase activity in THO- and Sin3A-depleted cell lines correlates with increased R-loop formation, genomic instability, and replication fork stalling. Our study thus uncovers physical and functional crosstalk between RNA-binding factors and chromatin modifiers with a major role in preventing R-loop formation and RNA-mediated genome instability.
dc.identifier.doi10.15252/embj.201797208
dc.identifier.essn1460-2075
dc.identifier.pmcPMC5709763
dc.identifier.pmid29074626
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709763/pdf
dc.identifier.unpaywallURLhttps://europepmc.org/articles/pmc5709763?pdf=render
dc.identifier.urihttp://hdl.handle.net/10668/11735
dc.issue.number23
dc.journal.titleThe EMBO journal
dc.journal.titleabbreviationEMBO J
dc.language.isoen
dc.organizationCentro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER
dc.page.number3532-3547
dc.pubmedtypeJournal Article
dc.rights.accessRightsopen access
dc.subjectDNA–RNA hybrids
dc.subjectSin3A deacetylase
dc.subjectTHO/TREX
dc.subjectgenome instability
dc.subjecthistone acetylation
dc.subject.meshAcetylation
dc.subject.meshCell Cycle Proteins
dc.subject.meshDNA, Single-Stranded
dc.subject.meshDNA-Binding Proteins
dc.subject.meshGene Knockdown Techniques
dc.subject.meshGenomic Instability
dc.subject.meshHEK293 Cells
dc.subject.meshHeLa Cells
dc.subject.meshHistones
dc.subject.meshHumans
dc.subject.meshModels, Biological
dc.subject.meshNuclear Proteins
dc.subject.meshRNA
dc.subject.meshRNA Processing, Post-Transcriptional
dc.subject.meshRNA-Binding Proteins
dc.subject.meshRepressor Proteins
dc.subject.meshSin3 Histone Deacetylase and Corepressor Complex
dc.subject.meshTranscription, Genetic
dc.titleHuman THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number36
dspace.entity.typePublication

Files