Publication:
Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models.

dc.contributor.authorEsteban-Medina, Marina
dc.contributor.authorPeña-Chilet, María
dc.contributor.authorLoucera, Carlos
dc.contributor.authorDopazo, Joaquín
dc.date.accessioned2023-01-25T13:36:15Z
dc.date.available2023-01-25T13:36:15Z
dc.date.issued2019-07-02
dc.description.abstractIn spite of the abundance of genomic data, predictive models that describe phenotypes as a function of gene expression or mutations are difficult to obtain because they are affected by the curse of dimensionality, given the disbalance between samples and candidate genes. And this is especially dramatic in scenarios in which the availability of samples is difficult, such as the case of rare diseases. The application of multi-output regression machine learning methodologies to predict the potential effect of external proteins over the signaling circuits that trigger Fanconi anemia related cell functionalities, inferred with a mechanistic model, allowed us to detect over 20 potential therapeutic targets. The use of artificial intelligence methods for the prediction of potentially causal relationships between proteins of interest and cell activities related with disease-related phenotypes opens promising avenues for the systematic search of new targets in rare diseases.
dc.identifier.doi10.1186/s12859-019-2969-0
dc.identifier.essn1471-2105
dc.identifier.pmcPMC6604281
dc.identifier.pmid31266445
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604281/pdf
dc.identifier.unpaywallURLhttps://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/s12859-019-2969-0
dc.identifier.urihttp://hdl.handle.net/10668/14209
dc.issue.number1
dc.journal.titleBMC bioinformatics
dc.journal.titleabbreviationBMC Bioinformatics
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.page.number370
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBig data
dc.subjectFanconi anemia
dc.subjectGenomics
dc.subjectMachine learning
dc.subjectMathematical models
dc.subjectSignaling pathways
dc.subject.meshDatabases, Factual
dc.subject.meshFanconi Anemia
dc.subject.meshGenomics
dc.subject.meshHumans
dc.subject.meshMachine Learning
dc.subject.meshPhenotype
dc.subject.meshProteins
dc.subject.meshSignal Transduction
dc.titleExploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number20
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC6604281.pdf
Size:
2.1 MB
Format:
Adobe Portable Document Format