Publication:
Normalized Workflow to Optimize Hybrid De Novo Transcriptome Assembly for Non-Model Species: A Case Study in Lilium ledebourii (Baker) Boiss.

dc.contributor.authorSheikh-Assadi, Morteza
dc.contributor.authorNaderi, Roohangiz
dc.contributor.authorSalami, Seyed Alireza
dc.contributor.authorKafi, Mohsen
dc.contributor.authorFatahi, Reza
dc.contributor.authorShariati, Vahid
dc.contributor.authorMartinelli, Federico
dc.contributor.authorCicatelli, Angela
dc.contributor.authorTriassi, Maria
dc.contributor.authorGuarino, Francesco
dc.contributor.authorImprota, Giovanni
dc.contributor.authorClaros, Manuel Gonzalo
dc.date.accessioned2023-05-03T14:21:37Z
dc.date.available2023-05-03T14:21:37Z
dc.date.issued2022-09-10
dc.description.abstractA high-quality transcriptome is required to advance numerous bioinformatics workflows. Nevertheless, the effectuality of tools for de novo assembly and real precision assembled transcriptomes looks somewhat unexplored, particularly for non-model organisms with complicated (very long, heterozygous, polyploid) genomes. To disclose the performance of various transcriptome assembly programs, this study built 11 single assemblies and analyzed their performance on some significant reference-free and reference-based criteria. As well as to reconfirm the outputs of benchmarks, 55 BLAST were performed and compared using 11 constructed transcriptomes. Concisely, normalized benchmarking demonstrated that Velvet-Oases suffer from the worst results, while the EvidentialGene strategy can provide the most comprehensive and accurate transcriptome of Lilium ledebourii (Baker) Boiss. The BLAST results also confirmed the superiority of EvidentialGene, so it could capture even up to 59% more (than Velvet-Oases) unique gene hits. To promote assembly optimization, with the help of normalized benchmarking, PCA and AHC, it is emphasized that each metric can only provide part of the transcriptome status, and one should never settle for just a few evaluation criteria. This study supplies a framework for benchmarking and optimizing the efficiency of assembly approaches to analyze RNA-Seq data and reveals that selecting an inefficient assembly strategy might result in less identification of unique gene hits.
dc.identifier.doi10.3390/plants11182365
dc.identifier.issn2223-7747
dc.identifier.pmcPMC9503428
dc.identifier.pmid36145766
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9503428/pdf
dc.identifier.unpaywallURLhttps://www.mdpi.com/2223-7747/11/18/2365/pdf?version=1662805682
dc.identifier.urihttp://hdl.handle.net/10668/21561
dc.issue.number18
dc.journal.titlePlants (Basel, Switzerland)
dc.journal.titleabbreviationPlants (Basel)
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectde novo assembly
dc.subjecthybrid transcriptome
dc.subjectnon-model organisms
dc.subjectnormalized comparison
dc.subjectoptimization
dc.subjecttranscriptomics
dc.titleNormalized Workflow to Optimize Hybrid De Novo Transcriptome Assembly for Non-Model Species: A Case Study in Lilium ledebourii (Baker) Boiss.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number11
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC9503428.pdf
Size:
10.88 MB
Format:
Adobe Portable Document Format