Publication:
Review: High-performance computing to detect epistasis in genome scale data sets.

dc.contributor.authorUpton, Alex
dc.contributor.authorTrelles, Oswaldo
dc.contributor.authorCornejo-Garcia, Jose Antonio
dc.contributor.authorPerkins, James Richard
dc.contributor.funderSpanish Ministry of Economy and Competitiveness
dc.contributor.funderProyecto de Excelencia Junta de Andalucia
dc.contributor.funderHealth Government of Andalusia
dc.contributor.funderCarlos III National Health Institute
dc.date.accessioned2023-01-25T08:32:31Z
dc.date.available2023-01-25T08:32:31Z
dc.date.issued2015-08-13
dc.description.abstractIt is becoming clear that most human diseases have a complex etiology that cannot be explained by single nucleotide polymorphisms (SNPs) or simple additive combinations; the general consensus is that they are caused by combinations of multiple genetic variations. The limited success of some genome-wide association studies is partly a result of this focus on single genetic markers. A more promising approach is to take into account epistasis, by considering the association of multiple SNP interactions with disease. However, as genomic data continues to grow in resolution, and genome and exome sequencing become more established, the number of combinations of variants to consider increases rapidly. Two potential solutions should be considered: the use of high-performance computing, which allows us to consider a larger number of variables, and heuristics to make the solution more tractable, essential in the case of genome sequencing. In this review, we look at different computational methods to analyse epistatic interactions within disease-related genetic data sets created by microarray technology. We also review efforts to use epistatic analysis results to produce biomarkers for diagnostic tests and give our views on future directions in this field in light of advances in sequencing technology and variants in non-coding regions.
dc.description.versionSi
dc.identifier.citationUpton A, Trelles O, Cornejo-García JA, Perkins JR. Review: High-performance computing to detect epistasis in genome scale data sets. Brief Bioinform. 2016 May;17(3):368-79
dc.identifier.doi10.1093/bib/bbv058
dc.identifier.essn1477-4054
dc.identifier.pmid26272945
dc.identifier.unpaywallURLhttps://academic.oup.com/bib/article-pdf/17/3/368/6687036/bbv058.pdf
dc.identifier.urihttp://hdl.handle.net/10668/10083
dc.issue.number3
dc.journal.titleBriefings in bioinformatics
dc.journal.titleabbreviationBrief Bioinform
dc.language.isoen
dc.organizationInstituto de Investigación Biomédica de Málaga-IBIMA
dc.organizationHospital Universitario Regional de Málaga
dc.page.number368-79
dc.provenanceRealizada la curación de contenido 08/05/2025
dc.publisherOxford University Press
dc.pubmedtypeJournal Article
dc.pubmedtypeReview
dc.relation.projectIDISCIIIPT13.0001.0012
dc.relation.projectIDP10-TIC-6108
dc.relation.projectIDPI-0279-2012
dc.relation.projectIDRD12/0013
dc.relation.projectIDPI12/02247
dc.relation.publisherversionhttps://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbv058
dc.rights.accessRightsRestricted Access
dc.subjectSNP-interactions
dc.subjectBiomarker
dc.subjectDisease marker
dc.subjectEpistasis
dc.subjectGenome sequencing
dc.subjectGenotyping
dc.subjectHigh-performance computing
dc.subject.decsGenoma
dc.subject.decsPolimorfismo de nucleótido simple
dc.subject.decsCodificación clínica
dc.subject.decsPruebas diagnósticas de rutina
dc.subject.decsVariación genética
dc.subject.meshAlgorithms
dc.subject.meshEpistasis, Genetic
dc.subject.meshGenome
dc.subject.meshGenome-Wide Association Study
dc.subject.meshHumans
dc.subject.meshPolymorphism, Single Nucleotide
dc.titleReview: High-performance computing to detect epistasis in genome scale data sets.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number17
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
RISalud_Accesorestringido.pdf
Size:
93.39 KB
Format:
Adobe Portable Document Format