Publication:
Data processing workflow for large-scale immune monitoring studies by mass cytometry

dc.contributor.authorRybakowska, Paulina
dc.contributor.authorVan Gassen, Sofie
dc.contributor.authorQuintelier, Katrien
dc.contributor.authorSaeys, Yvan
dc.contributor.authorAlarcón-Riquelme, Marta E.
dc.contributor.authorMarañón, Concepción
dc.contributor.authoraffiliation[Rybakowska,P; Alarcón-Riquelme,ME; Marañón,C] GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Spain. [Van Gassen,S; Quintelier,K; Saeys,Y] Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Gent Belgium. [Van Gassen,S; Quintelier,K; Saeys,Y] Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Gent, Belgium. [Quintelier,K] Department of Pulmonary Diseases, Erasmus MC, Rotterdam, the Netherlands. [Alarcón-Riquelme.ME] Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
dc.contributor.funderThe authors also acknowledge funding from Consejería de la Salud y Familias de la Junta de Andalucía (PIER-0118-2019) and Instituto de Salud Carlos III (PI18/00082), partly supported by European FEDER funds.
dc.date.accessioned2022-11-18T11:15:08Z
dc.date.available2022-11-18T11:15:08Z
dc.date.issued2021-05-21
dc.description.abstractMass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality, a careful experimental and analytical design is required. However even in well-controlled experiments variability caused by either operator or instrument can introduce artifacts that need to be corrected or removed from the data. Here we present a data processing pipeline which ensures the minimization of experimental artifacts and batch effects, while improving data quality. Data preprocessing and quality controls are carried out using an R pipeline and packages like CATALYST for bead-normalization and debarcoding, flowAI and flowCut for signal anomaly cleaning, AOF for files quality control, flowClean and flowDensity for gating, CytoNorm for batch normalization and FlowSOM and UMAP for data exploration. As proper experimental design is key in obtaining good quality events, we also include the sample processing protocol used to generate the data. Both, analysis and experimental pipelines are easy to scale-up, thus the workflow presented here is particularly suitable for large-scale, multicenter, multibatch and retrospective studies.es_ES
dc.description.versionYeses_ES
dc.identifier.citationRybakowska P, Van Gassen S, Quintelier K, Saeys Y, Alarcón-Riquelme ME, Marañón C. Data processing workflow for large-scale immune monitoring studies by mass cytometry. Comput Struct Biotechnol J. 2021 May 21;19:3160-3175es_ES
dc.identifier.doi10.1016/j.csbj.2021.05.032es_ES
dc.identifier.essn2001-0370
dc.identifier.pmcPMC8188119
dc.identifier.pmid34141137es_ES
dc.identifier.urihttp://hdl.handle.net/10668/4361
dc.journal.titleComputational and Structural Biotechnology Journal
dc.language.isoen
dc.page.number16 p.
dc.publisherElsevier B.V. on behalf of Research Network of Computational and Structural Biotechnologyes_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2001037021002130es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsAcceso abiertoes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectMass cytometryes_ES
dc.subjectSemi-automated data preprocessinges_ES
dc.subjectImmune phenotypinges_ES
dc.subjectData normalizationes_ES
dc.subjectQuality controles_ES
dc.subjectWorkflowes_ES
dc.subjectArtifactses_ES
dc.subjectFlow cytometryes_ES
dc.subjectControl de calidades_ES
dc.subjectFlujo de trabajoes_ES
dc.subjectArtefactoses_ES
dc.subjectCitometría de Flujoes_ES
dc.subjectMonitorización inmunológicaes_ES
dc.subjectInmunofenotipificaciónes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Epidemiologic Study Characteristics as Topic::Epidemiologic Studies::Case-Control Studies::Retrospective Studieses_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Systems Analysis::Workflowes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Monitoring, Physiologic::Monitoring, Immunologices_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Artifactses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Methods::Research Designes_ES
dc.subject.meshMedical Subject Headings::Technology and Food and Beverages::Technology, Industry, and Agriculture::Technology::Quality Controles_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Clinical Laboratory Techniques::Specimen Handlinges_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Epidemiologic Study Characteristics as Topic::Clinical Trials as Topic::Multicenter Studies as Topices_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Immunologic Techniques::Immunologic Tests::Immunophenotypinges_ES
dc.titleData processing workflow for large-scale immune monitoring studies by mass cytometryes_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Rybakowska_DataProcessing.pdf
Size:
3.95 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado
Loading...
Thumbnail Image
Name:
Rybakowska_DataProcessing_MaterialSuplementario_1.pdf
Size:
22.47 KB
Format:
Adobe Portable Document Format
Description:
Material suplementario
No Thumbnail Available
Name:
Rybakowska_DataProcessing_MaterialSuplementario_2.docx
Size:
2.1 MB
Format:
Microsoft Word XML
Description:
Material suplementario