Publication: Data processing workflow for large-scale immune monitoring studies by mass cytometry
dc.contributor.author | Rybakowska, Paulina | |
dc.contributor.author | Van Gassen, Sofie | |
dc.contributor.author | Quintelier, Katrien | |
dc.contributor.author | Saeys, Yvan | |
dc.contributor.author | Alarcón-Riquelme, Marta E. | |
dc.contributor.author | Marañón, Concepción | |
dc.contributor.authoraffiliation | [Rybakowska,P; Alarcón-Riquelme,ME; Marañón,C] GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Spain. [Van Gassen,S; Quintelier,K; Saeys,Y] Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Gent Belgium. [Van Gassen,S; Quintelier,K; Saeys,Y] Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Gent, Belgium. [Quintelier,K] Department of Pulmonary Diseases, Erasmus MC, Rotterdam, the Netherlands. [Alarcón-Riquelme.ME] Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden. | |
dc.contributor.funder | The authors also acknowledge funding from Consejería de la Salud y Familias de la Junta de Andalucía (PIER-0118-2019) and Instituto de Salud Carlos III (PI18/00082), partly supported by European FEDER funds. | |
dc.date.accessioned | 2022-11-18T11:15:08Z | |
dc.date.available | 2022-11-18T11:15:08Z | |
dc.date.issued | 2021-05-21 | |
dc.description.abstract | Mass cytometry is a powerful tool for deep immune monitoring studies. To ensure maximal data quality, a careful experimental and analytical design is required. However even in well-controlled experiments variability caused by either operator or instrument can introduce artifacts that need to be corrected or removed from the data. Here we present a data processing pipeline which ensures the minimization of experimental artifacts and batch effects, while improving data quality. Data preprocessing and quality controls are carried out using an R pipeline and packages like CATALYST for bead-normalization and debarcoding, flowAI and flowCut for signal anomaly cleaning, AOF for files quality control, flowClean and flowDensity for gating, CytoNorm for batch normalization and FlowSOM and UMAP for data exploration. As proper experimental design is key in obtaining good quality events, we also include the sample processing protocol used to generate the data. Both, analysis and experimental pipelines are easy to scale-up, thus the workflow presented here is particularly suitable for large-scale, multicenter, multibatch and retrospective studies. | es_ES |
dc.description.version | Yes | es_ES |
dc.identifier.citation | Rybakowska P, Van Gassen S, Quintelier K, Saeys Y, Alarcón-Riquelme ME, Marañón C. Data processing workflow for large-scale immune monitoring studies by mass cytometry. Comput Struct Biotechnol J. 2021 May 21;19:3160-3175 | es_ES |
dc.identifier.doi | 10.1016/j.csbj.2021.05.032 | es_ES |
dc.identifier.essn | 2001-0370 | |
dc.identifier.pmc | PMC8188119 | |
dc.identifier.pmid | 34141137 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10668/4361 | |
dc.journal.title | Computational and Structural Biotechnology Journal | |
dc.language.iso | en | |
dc.page.number | 16 p. | |
dc.publisher | Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology | es_ES |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S2001037021002130 | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.accessRights | Acceso abierto | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Mass cytometry | es_ES |
dc.subject | Semi-automated data preprocessing | es_ES |
dc.subject | Immune phenotyping | es_ES |
dc.subject | Data normalization | es_ES |
dc.subject | Quality control | es_ES |
dc.subject | Workflow | es_ES |
dc.subject | Artifacts | es_ES |
dc.subject | Flow cytometry | es_ES |
dc.subject | Control de calidad | es_ES |
dc.subject | Flujo de trabajo | es_ES |
dc.subject | Artefactos | es_ES |
dc.subject | Citometría de Flujo | es_ES |
dc.subject | Monitorización inmunológica | es_ES |
dc.subject | Inmunofenotipificación | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Epidemiologic Study Characteristics as Topic::Epidemiologic Studies::Case-Control Studies::Retrospective Studies | es_ES |
dc.subject.mesh | Medical Subject Headings::Information Science::Information Science::Systems Analysis::Workflow | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Monitoring, Physiologic::Monitoring, Immunologic | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Artifacts | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Methods::Research Design | es_ES |
dc.subject.mesh | Medical Subject Headings::Technology and Food and Beverages::Technology, Industry, and Agriculture::Technology::Quality Control | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Diagnosis::Diagnostic Techniques and Procedures::Clinical Laboratory Techniques::Specimen Handling | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Epidemiologic Study Characteristics as Topic::Clinical Trials as Topic::Multicenter Studies as Topic | es_ES |
dc.subject.mesh | Medical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Immunologic Techniques::Immunologic Tests::Immunophenotyping | es_ES |
dc.title | Data processing workflow for large-scale immune monitoring studies by mass cytometry | es_ES |
dc.type | research article | |
dc.type.hasVersion | VoR | |
dspace.entity.type | Publication |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- Rybakowska_DataProcessing.pdf
- Size:
- 3.95 MB
- Format:
- Adobe Portable Document Format
- Description:
- Artículo publicado
Loading...
- Name:
- Rybakowska_DataProcessing_MaterialSuplementario_1.pdf
- Size:
- 22.47 KB
- Format:
- Adobe Portable Document Format
- Description:
- Material suplementario
No Thumbnail Available
- Name:
- Rybakowska_DataProcessing_MaterialSuplementario_2.docx
- Size:
- 2.1 MB
- Format:
- Microsoft Word XML
- Description:
- Material suplementario