Publication:
Mechanistic modeling of the SARS-CoV-2 disease map.

dc.contributor.authorRian, Kinza
dc.contributor.authorEsteban-Medina, Marina
dc.contributor.authorHidalgo, Marta R
dc.contributor.authorÇubuk, Cankut
dc.contributor.authorFalco, Matias M
dc.contributor.authorLoucera, Carlos
dc.contributor.authorGunyel, Devrim
dc.contributor.authorOstaszewski, Marek
dc.contributor.authorPeña-Chilet, María
dc.contributor.authorDopazo, Joaquín
dc.date.accessioned2023-02-09T10:40:06Z
dc.date.available2023-02-09T10:40:06Z
dc.date.issued2021-01-21
dc.description.abstractHere we present a web interface that implements a comprehensive mechanistic model of the SARS-CoV-2 disease map. In this framework, the detailed activity of the human signaling circuits related to the viral infection, covering from the entry and replication mechanisms to the downstream consequences as inflammation and antigenic response, can be inferred from gene expression experiments. Moreover, the effect of potential interventions, such as knock-downs, or drug effects (currently the system models the effect of more than 8000 DrugBank drugs) can be studied. This freely available tool not only provides an unprecedentedly detailed view of the mechanisms of viral invasion and the consequences in the cell but has also the potential of becoming an invaluable asset in the search for efficient antiviral treatments.
dc.identifier.doi10.1186/s13040-021-00234-1
dc.identifier.issn1756-0381
dc.identifier.pmcPMC7817765
dc.identifier.pmid33478554
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817765/pdf
dc.identifier.unpaywallURLhttps://biodatamining.biomedcentral.com/counter/pdf/10.1186/s13040-021-00234-1
dc.identifier.urihttp://hdl.handle.net/10668/17016
dc.issue.number1
dc.journal.titleBioData mining
dc.journal.titleabbreviationBioData Min
dc.language.isoen
dc.organizationFundación Pública Andaluz Progreso y Salud-FPS
dc.organizationInstituto de Biomedicina de Sevilla-IBIS
dc.organizationHospital Universitario Virgen del Rocío
dc.page.number5
dc.pubmedtypeJournal Article
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectCOVID-19
dc.subjectDrug discovery
dc.subjectMechanistic modeling
dc.subjectSignaling pathway
dc.subjectSystems biology
dc.titleMechanistic modeling of the SARS-CoV-2 disease map.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number14
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC7817765.pdf
Size:
665.35 KB
Format:
Adobe Portable Document Format