Publication:
Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry

dc.contributor.authorRybakowska, Paulina
dc.contributor.authorAlarcón-Riquelme, Marta E.
dc.contributor.authorMarañón, Concepción
dc.contributor.authoraffiliation[Rybakowska,P; Alarcón-Riquelme,ME; Marañón,C] GENYO, Centre for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Spain. [Alarcón-Riquelme,ME] Institute for Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
dc.contributor.funderPR acknowledges support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n° [115565], resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution (MEAR as PI) and in particular the in-cash support from Sanofi/Genzyme to PR. CM was supported by Instituto de Salud Carlos III (Miguel Servet II program, CPII16/00028). The authors also acknowledge support from Instituto de Salud Carlos III (PI18/00082) partly supported by European FEDER funds.
dc.date.accessioned2022-06-08T13:11:47Z
dc.date.available2022-06-08T13:11:47Z
dc.date.issued2020-03-31
dc.description.abstractHigh-dimensional, single-cell cell technologies revolutionized the way to study biological systems, and polychromatic flow cytometry (FC) and mass cytometry (MC) are two of the drivers of this revolution. As up to 30-50 dimensions respectively can be measured per single-cell, they allow deep phenotyping combined with cellular functions studies, like cytokine production or protein phosphorylation. In parallel, the bioinformatics field develops algorithms that are able to process incoming data and extract the most useful and meaningful biological information. However, the success of automated analysis tools depends on the generation of high-quality data. In this review we present the most recent FC and MC computational approaches that are used to prepare, process and interpret high-content cytometry data. We also underscore proper experimental design as a key step for obtaining good quality data.es_ES
dc.description.versionYeses_ES
dc.identifier.citationRybakowska P, Alarcón-Riquelme ME, Marañón C. Key steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometry. Comput Struct Biotechnol J. 2020 Mar 31;18:874-886es_ES
dc.identifier.doi10.1016/j.csbj.2020.03.024es_ES
dc.identifier.essn2001-0370
dc.identifier.pmcPMC7163213
dc.identifier.pmid32322369es_ES
dc.identifier.urihttp://hdl.handle.net/10668/3683
dc.journal.titleComputational and Structural Biotechnology Journal
dc.language.isoen
dc.page.number13 p.
dc.publisherElsevieres_ES
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2001037019303848es_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.accessRightsAcceso abiertoes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFlow cytometryes_ES
dc.subjectMass cytometryes_ES
dc.subjectBioinformaticses_ES
dc.subjectComputational toolses_ES
dc.subjectSingle-cell proteomicses_ES
dc.subjectData accuracyes_ES
dc.subjectCitometría de flujoes_ES
dc.subjectBiología computacionales_ES
dc.subjectAlgoritmoses_ES
dc.subjectCélulases_ES
dc.subjectExactitud de los datoses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Cytological Techniques::Cytophotometry::Flow Cytometryes_ES
dc.subject.meshMedical Subject Headings::Disciplines and Occupations::Natural Science Disciplines::Biological Science Disciplines::Biology::Computational Biologyes_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Chemical Phenomena::Biochemical Phenomena::Biochemical Processes::Phosphorylationes_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Methods::Research Designes_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Mathematical Concepts::Algorithmses_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Algorithmses_ES
dc.subject.meshMedical Subject Headings::Anatomy::Cellses_ES
dc.titleKey steps and methods in the experimental design and data analysis of highly multi-parametric flow and mass cytometryes_ES
dc.typereview article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rybakowska_KeyStepsAnd.pdf
Size:
611.13 KB
Format:
Adobe Portable Document Format
Description:
Revisión