Publication:
Bayesian variable selection and survival modeling: assessing the Most important comorbidities that impact lung and colorectal cancer survival in Spain.

dc.contributor.authorRubio, Francisco Javier
dc.contributor.authorAlvares, Danilo
dc.contributor.authorRedondo-Sanchez, Daniel
dc.contributor.authorMarcos-Gragera, Rafael
dc.contributor.authorSanchez-Perez, Maria-Jose
dc.contributor.authorLuque-Fernandez, Miguel Angel
dc.contributor.funderInstituto de Salud Carlos III, Madrid, Spain
dc.contributor.funderNational Fund for Scientific and Technological Development (FONDECYT, Chile)
dc.contributor.funderMiguel Servet I Investigator award
dc.date.accessioned2023-05-03T13:33:06Z
dc.date.available2023-05-03T13:33:06Z
dc.date.issued2022-03-21
dc.description.abstractCancer survival represents one of the main indicators of interest in cancer epidemiology. However, the survival of cancer patients can be affected by several factors, such as comorbidities, that may interact with the cancer biology. Moreover, it is interesting to understand how different cancer sites and tumour stages are affected by different comorbidities. Identifying the comorbidities that affect cancer survival is thus of interest as it can be used to identify factors driving the survival of cancer patients. This information can also be used to identify vulnerable groups of patients with comorbidities that may lead to worst prognosis of cancer. We address these questions and propose a principled selection and evaluation of the effect of comorbidities on the overall survival of cancer patients. In the first step, we apply a Bayesian variable selection method that can be used to identify the comorbidities that predict overall survival. In the second step, we build a general Bayesian survival model that accounts for time-varying effects. In the third step, we derive several posterior predictive measures to quantify the effect of individual comorbidities on the population overall survival. We present applications to data on lung and colorectal cancers from two Spanish population-based cancer registries. The proposed methodology is implemented with a combination of the R-packages mombf and rstan. We provide the code for reproducibility at https://github.com/migariane/BayesVarImpComorbiCancer .
dc.description.versionSi
dc.identifier.citationRubio FJ, Alvares D, Redondo-Sanchez D, Marcos-Gragera R, Sánchez MJ, Luque-Fernandez MA. Bayesian variable selection and survival modeling: assessing the Most important comorbidities that impact lung and colorectal cancer survival in Spain. BMC Med Res Methodol. 2022 Apr 3;22(1):95
dc.identifier.doi10.1186/s12874-022-01582-0
dc.identifier.essn1471-2288
dc.identifier.pmcPMC8978388
dc.identifier.pmid35369875
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8978388/pdf
dc.identifier.unpaywallURLhttps://doi.org/10.1186/s12874-022-01582-0
dc.identifier.urihttp://hdl.handle.net/10668/20265
dc.issue.number1
dc.journal.titleBMC medical research methodology
dc.journal.titleabbreviationBMC Med Res Methodol
dc.language.isoen
dc.organizationEscuela Andaluza de Salud Pública-EASP
dc.organizationInstituto de Investigación Biosanitaria de Granada (ibs.GRANADA)
dc.page.number14
dc.provenanceRealizada la curación de contenido 26/08/2024
dc.publisherBioMed Central Ltd.
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.relation.projectIDCP17/00206
dc.relation.projectIDPI-18/01593
dc.relation.projectID11190018
dc.relation.publisherversionhttps://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-022-01582-0
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBayesian variable selection
dc.subjectCancer survival
dc.subjectComorbidities
dc.subjectConditional effects
dc.subjectMarginal effects
dc.subject.decsEspaña
dc.subject.decsHumanos
dc.subject.decsNeoplasias colorrectales
dc.subject.decsPulmón
dc.subject.decsReproducibilidad de los resultados
dc.subject.decsTeorema de Bayes
dc.subject.meshBayes Theorem
dc.subject.meshColorectal Neoplasms
dc.subject.meshHumans
dc.subject.meshLung
dc.subject.meshReproducibility of Results
dc.subject.meshSpain
dc.titleBayesian variable selection and survival modeling: assessing the Most important comorbidities that impact lung and colorectal cancer survival in Spain.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number22
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC8978388.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format