Publication:
Artificial intelligence for renal cancer: From imaging to histology and beyond

dc.contributor.authorKowalewski, Karl-Friedrich
dc.contributor.authorEgen, Luisa
dc.contributor.authorFischetti, Chanel E.
dc.contributor.authorPuliatti, Stefano
dc.contributor.authorRivas Juan, Gomez
dc.contributor.authorTaratkin, Mark
dc.contributor.authorBelenchon Ines, Rivero
dc.contributor.authorAbate, Marie Angela Sidoti
dc.contributor.authorMuehlbauer, Julia
dc.contributor.authorWessels, Frederik
dc.contributor.authorCheccucci, Enrico
dc.contributor.authorCacciamani, Giovanni
dc.contributor.authorYAU
dc.contributor.authoraffiliation[Kowalewski, Karl-Friedrich] Univ Med Ctr Mannheim, Dept Urol & Urol Surg, Mannheim, Germany
dc.contributor.authoraffiliation[Egen, Luisa] Univ Med Ctr Mannheim, Dept Urol & Urol Surg, Mannheim, Germany
dc.contributor.authoraffiliation[Abate, Marie Angela Sidoti] Univ Med Ctr Mannheim, Dept Urol & Urol Surg, Mannheim, Germany
dc.contributor.authoraffiliation[Muehlbauer, Julia] Univ Med Ctr Mannheim, Dept Urol & Urol Surg, Mannheim, Germany
dc.contributor.authoraffiliation[Wessels, Frederik] Univ Med Ctr Mannheim, Dept Urol & Urol Surg, Mannheim, Germany
dc.contributor.authoraffiliation[Fischetti, Chanel E.] Harvard Med Sch, Brigham & Womens Hosp, Dept Emergency Med, Boston, MA 02115 USA
dc.contributor.authoraffiliation[Puliatti, Stefano] Univ Modena & Reggio Emilia, Dept Urol, Modena, Italy
dc.contributor.authoraffiliation[Puliatti, Stefano] ORSI Acad, Melle, Belgium
dc.contributor.authoraffiliation[Rivas Juan, Gomez] Hosp Clin San Carlos, Dept Urol, Madrid, Spain
dc.contributor.authoraffiliation[Taratkin, Mark] Sechenov Univ, Inst Urol & Reprod Hlth, Moscow, Russia
dc.contributor.authoraffiliation[Belenchon Ines, Rivero] Virgen del Rocio Univ Hosp, Urol & Nephrol Dept, Manuel Siurot S-N, Seville, Spain
dc.contributor.authoraffiliation[Checcucci, Enrico] FPO IRCCS, Candiolo Canc Inst, Dept Surg, Turin, Italy
dc.contributor.authoraffiliation[Cacciamani, Giovanni] Univ Southern Calif, USC Inst Urol, Los Angeles, CA 90007 USA
dc.date.accessioned2023-05-03T14:38:42Z
dc.date.available2023-05-03T14:38:42Z
dc.date.issued2022-07-01
dc.description.abstractArtificial intelligence (AI) has made considerable progress within the last decade and is the subject of contemporary literature. This trend is driven by improved computational abilities and increasing amounts of complex data that allow for new approaches in analysis and interpretation. Renal cell carcinoma (RCC) has a rising incidence since most tumors are now detected at an earlier stage due to improved imaging. This creates considerable challenges as approximately 10%-17% of kidney tumors are designated as benign in histopathological evaluation; however, certain co-morbid populations (the obese and elderly) have an increased peri-interventional risk. AI offers an alternative solution by helping to optimize precision and guidance for diagnostic and therapeutic decisions. The narrative review introduced basic principles and provide a comprehensive overview of current AI techniques for RCC. Currently, AI applications can be found in any aspect of RCC management including diagnostics, perioperative care, pathology, and follow-up. Most commonly applied models include neural networks, random forest, support vector machines, and regression. However, for implementation in daily practice, health care providers need to develop a basic understanding and establish interdisciplinary collaborations in order to standardize datasets, define meaningful endpoints, and unify interpretation. (C) 2022 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
dc.identifier.doi10.1016/j.ajur.2022.05.003
dc.identifier.essn2214-3890
dc.identifier.issn2214-3882
dc.identifier.unpaywallURLhttps://doi.org/10.1016/j.ajur.2022.05.003
dc.identifier.urihttp://hdl.handle.net/10668/21881
dc.identifier.wosID906889100008
dc.issue.number3
dc.journal.titleAsian journal of urology
dc.journal.titleabbreviationAsian j. urol.
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.page.number243-252
dc.publisherElsevier singapore pte ltd
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectKidney cancer
dc.subjectImaging
dc.subjectTechnology
dc.subjectArtificial intelligence
dc.subjectMachine learning
dc.subjectCell carcinoma
dc.subjectActive surveillance
dc.subjectPulsatile motion
dc.subjectPerformance
dc.subjectValidation
dc.subjectMasses
dc.subjectTumor
dc.subjectRadiomics
dc.subjectPredict
dc.subjectCt
dc.titleArtificial intelligence for renal cancer: From imaging to histology and beyond
dc.typereview
dc.type.hasVersionVoR
dc.volume.number9
dc.wostypeReview
dspace.entity.typePublication

Files