Publication:
VIGLA-M: visual gene expression data analytics

dc.contributor.authorNavas-Delgado, Ismael
dc.contributor.authorGarcía-Nieto, José
dc.contributor.authorLópez-Camacho, Esteban
dc.contributor.authorRybinski, Maciej
dc.contributor.authorLavado, Rocío
dc.contributor.authorBerciano Guerrero, Miguel Ángel
dc.contributor.authorAldana-Montes, José F.
dc.contributor.authoraffiliation[Navas-Delgado,I; García-Nieto,J; López-Camacho,E; Rybinski,M; Aldana-Montes,JF] Khaos Research, Universidad de Málaga, Málaga, Spain. [Lavado,R; Berciano Guerrero,MA] Unidad de Oncología Intercentros, Hospitales Univesitarios Regional y Virgen de la Victoria de Málaga, Instituto de Investigaciones Biomédicas (IBIMA), Málaga, Spain.
dc.contributor.funderThis work has been partially funded by Grants TIN2017-86049-R and TIN2014-58304-R (Spanish Ministry of Education and Science) and P12-TIC-1519 (Plan Andaluz de Investigación, Desarrollo e Innovación).
dc.date.accessioned2020-10-22T11:24:52Z
dc.date.available2020-10-22T11:24:52Z
dc.date.issued2019-04-18
dc.description.abstractBackground: The analysis of gene expression levels is used in many clinical studies to know how patients evolve or to find new genetic biomarkers that could help in clinical decision making. However, the techniques and software available for these analyses are not intended for physicians, but for geneticists. However, enabling physicians to make initial discoveries on these data would benefit in the clinical assay development. Results: Melanoma is a highly immunogenic tumor. Therefore, in recent years physicians have incorporated immune system altering drugs into their therapeutic arsenal against this disease, revolutionizing the treatment of patients with an advanced stage of the cancer. This has led us to explore and deepen our knowledge of the immunology surrounding melanoma, in order to optimize the approach. Within this project we have developed a database for collecting relevant clinical information for melanoma patients, including the storage of patient gene expression levels obtained from the NanoString platform (several samples are taken from each patient). The Immune Profiling Panel is used in this case. This database is being exploited through the analysis of the different expression profiles of the patients. This analysis is being done with Python, and a parallel version of the algorithms is available with Apache Spark to provide scalability as needed. Conclusions: VIGLA-M, the visual analysis tool for gene expression levels in melanoma patients is available at http://khaos.uma.es/melanoma/ . The platform with real clinical data can be accessed with a demo user account, physician, using password physician_test_7634 (if you encounter any problems, contact us at this email address: mailto: khaos@lcc.uma.es). The initial results of the analysis of gene expression levels using these tools are providing first insights into the patients' evolution. These results are promising, but larger scale tests must be developed once new patients have been sequenced, to discover new genetic biomarkers.es_ES
dc.description.versionYeses_ES
dc.identifier.citationNavas-Delgado I, García-Nieto J, López-Camacho E, Rybinski M, Lavado R, Berciano Guerrero MÁ, et al. VIGLA-M: visual gene expression data analytics. BMC Bioinformatics. 2019 Apr 18;20(Suppl 4):150.es_ES
dc.identifier.doi10.1186/s12859-019-2695-7es_ES
dc.identifier.essn1471-2105
dc.identifier.pmcPMC6472185
dc.identifier.urihttp://hdl.handle.net/10668/3194
dc.journal.titleBMC Bioinformatics
dc.language.isoen
dc.page.number11 p.
dc.publisherBioMed Central Ltd.es_ES
dc.relation.publisherversionhttps://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-2695-7es_ES
dc.rights.accessRightsopen access
dc.subjectGene expression level analysises_ES
dc.subjectNanostring immune profiling paneles_ES
dc.subjectMetastatic melanomaes_ES
dc.subjectGene Expression Profilinges_ES
dc.subjectBiomarkerses_ES
dc.subjectPerfilación de la expresión génicaes_ES
dc.subjectMelanomaes_ES
dc.subjectBiomarcadoreses_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Computing Methodologies::Algorithmses_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Epidemiologic Methods::Statistics as Topic::Cluster Analysises_ES
dc.subject.meshMedical Subject Headings::Information Science::Information Science::Information Storage and Retrieval::Databases as Topic::Databases, Factuales_ES
dc.subject.meshMedical Subject Headings::Analytical, Diagnostic and Therapeutic Techniques and Equipment::Investigative Techniques::Genetic Techniques::Gene Expression Profilinges_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Processes::Gene Expression Regulationes_ES
dc.subject.meshMedical Subject Headings::Phenomena and Processes::Genetic Phenomena::Genetic Structures::Base Sequence::Regulatory Sequences, Nucleic Acid::Gene Regulatory Networkses_ES
dc.subject.meshMedical Subject Headings::Organisms::Eukaryota::Animals::Chordata::Vertebrates::Mammals::Primates::Haplorhini::Catarrhini::Hominidae::Humanses_ES
dc.subject.meshMedical Subject Headings::Diseases::Neoplasms::Neoplasms by Histologic Type::Neoplasms, Germ Cell and Embryonal::Neuroectodermal Tumors::Neuroendocrine Tumors::Melanomaes_ES
dc.titleVIGLA-M: visual gene expression data analyticses_ES
dc.typeresearch article
dc.type.hasVersionVoR
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NavasDelgado_VIGLAM.pdf
Size:
2.6 MB
Format:
Adobe Portable Document Format
Description:
Artículo publicado