Publication:
Antibiotic resistance and metabolic profiles as functional biomarkers that accurately predict the geographic origin of city metagenomics samples.

dc.contributor.authorCasimiro-Soriguer, Carlos S
dc.contributor.authorLoucera, Carlos
dc.contributor.authorPerez Florido, Javier
dc.contributor.authorLópez-López, Daniel
dc.contributor.authorDopazo, Joaquin
dc.date.accessioned2023-01-25T13:39:39Z
dc.date.available2023-01-25T13:39:39Z
dc.date.issued2019-08-20
dc.description.abstractThe availability of hundreds of city microbiome profiles allows the development of increasingly accurate predictors of the origin of a sample based on its microbiota composition. Typical microbiome studies involve the analysis of bacterial abundance profiles. Here we use a transformation of the conventional bacterial strain or gene abundance profiles to functional profiles that account for bacterial metabolism and other cell functionalities. These profiles are used as features for city classification in a machine learning algorithm that allows the extraction of the most relevant features for the classification. We demonstrate here that the use of functional profiles not only predict accurately the most likely origin of a sample but also to provide an interesting functional point of view of the biogeography of the microbiota. Interestingly, we show how cities can be classified based on the observed profile of antibiotic resistances. Open peer review: Reviewed by Jin Zhuang Dou, Jing Zhou, Torsten Semmler and Eran Elhaik.
dc.identifier.doi10.1186/s13062-019-0246-9
dc.identifier.essn1745-6150
dc.identifier.pmcPMC6701120
dc.identifier.pmid31429791
dc.identifier.pubmedURLhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6701120/pdf
dc.identifier.unpaywallURLhttps://doi.org/10.1186/s13062-019-0246-9
dc.identifier.urihttp://hdl.handle.net/10668/14420
dc.issue.number1
dc.journal.titleBiology direct
dc.journal.titleabbreviationBiol Direct
dc.language.isoen
dc.organizationHospital Universitario Virgen del Rocío
dc.page.number15
dc.pubmedtypeJournal Article
dc.pubmedtypeResearch Support, Non-U.S. Gov't
dc.rightsAttribution 4.0 International
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAntibiotic resistance
dc.subjectClassification
dc.subjectFunctional profiling
dc.subjectMachine learning
dc.subjectMetagenomics
dc.subjectWhole genome sequencing
dc.subject.meshBiomarkers
dc.subject.meshCities
dc.subject.meshDrug Resistance, Microbial
dc.subject.meshMachine Learning
dc.subject.meshMetabolome
dc.subject.meshMetagenome
dc.subject.meshMetagenomics
dc.subject.meshMicrobiota
dc.titleAntibiotic resistance and metabolic profiles as functional biomarkers that accurately predict the geographic origin of city metagenomics samples.
dc.typeresearch article
dc.type.hasVersionVoR
dc.volume.number14
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PMC6701120.pdf
Size:
2.49 MB
Format:
Adobe Portable Document Format